Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:Cách thông thường nhất là sos hoặc cauchy-Schwarz nhưng thôi ko làm:v Thử cách này cho nó mới dù rằng ko chắc
Giả sử \(a\ge b\ge c\Rightarrow c\le1\Rightarrow a+b=3-c\ge2\) và \(a\ge1\)
Ta có \(LHS=a^3.a+b^3.b+c^3.c\)
\(=\left(a^3-b^3\right)a+\left(b^3-c^3\right)\left(a+b\right)+c^3\left(a+b+c\right)\)
\(\ge\left(a^3-b^3\right).1+\left(b^3-c^3\right).2+3c^3\)
\(=a^3+b^3+c^3=RHS\)
Đẳng thức xảy ra khi a = b = c = 1
Bạn tham khảo (hoàn toàn dùng Cô-si):
Câu hỏi của Trần Anh Thơ - Toán lớp 8 | Học trực tuyến
1.
\(P=\frac{a^4}{abc}+\frac{b^4}{abc}+\frac{c^4}{abc}\ge\frac{\left(a^2+b^2+c^2\right)^2}{3abc}=\frac{\left(a^2+b^2+c^2\right)\left(a^2+b^2+c^2\right)\left(a+b+c\right)}{3abc\left(a+b+c\right)}\)
\(P\ge\frac{\left(a^2+b^2+c^2\right).3\sqrt[3]{a^2b^2c^2}.3\sqrt[3]{abc}}{3abc\left(a+b+c\right)}=\frac{3\left(a^2+b^2+c^2\right)}{a+b+c}\)
Dấu "=" khi \(a=b=c\)
2.
\(P=\sum\frac{a^2}{ab+2ac+3ad}\ge\frac{\left(a+b+c+d\right)^2}{4\left(ab+ac+ad+bc+bd+cd\right)}\ge\frac{\left(a+b+c+d\right)^2}{4.\frac{3}{8}\left(a+b+c+d\right)^2}=\frac{2}{3}\)
Dấu "=" khi \(a=b=c=d\)
Ta có BĐT sau:
\(\frac{a^4+b^4}{a^3+b^3}\ge\frac{a+b}{2}\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\left(true\right)\)
Khi đó tương tự ta có nốt \(\frac{b^4+c^4}{b^3+c^3}\ge\frac{b+c}{2};\frac{c^4+a^4}{c^3+a^3}\ge\frac{c+a}{2}\)
Khi đó \(\frac{a^4+b^4}{a^3+b^3}+\frac{b^4+c^4}{b^3+c^3}+\frac{c^4+a^4}{c^3+a^3}\ge\frac{2\left(a+b+c\right)}{2}=a+b+c\)
Ta dễ chứng minh được
\(\frac{a^4}{a^3+b^3}+\frac{b^4}{b^3+c^3}+\frac{c^4}{c^3+a^3}=\frac{b^4}{a^3+b^3}+\frac{c^4}{b^3+c^3}+\frac{a^4}{a^3+c^3}\)( trừ cái là xong )
Khi đó \(LHS\ge\frac{a+b+c}{2}\)
Ta có điều phải chứng minh
Đẳng thức xảy ra tại a=b=c
Sử dụng BĐT Cauchu Schawrz cũng được