\(\frac{5a^3-b^3}{ab+3b^2}+\frac{5b^3-c^3}{cb+3c^2}+\frac{5c^3-a^3}{ac...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2017

Xem kỹ lại đề nhé. Anh không nghĩ đề đúng đâu

12 tháng 11 2017

uk e sorry sửa lại đề rồi đấy 

9 tháng 5 2018

 Đề bài bị trái dấu bạn nhé

CM \(\frac{5b^3-a^3}{ab+3b^2}\le2b-a\) 

\(\Leftrightarrow5b^3-a^3\le\left(2b-a\right)\left(ab+3b^2\right)\) 

\(\Leftrightarrow5b^3-a^3\le2ab^2+6b^3-a^2b-3ab^2\) 

\(\Leftrightarrow b^3+a^3-ab^2-ba^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\)đúng với mọi a, b>0 

CMTT các hạng tử khác 

\(\Rightarrow P=\frac{5b^3-a^3}{ab+3b^3}+\frac{5c^3-b^3}{bc+3c^3}+\frac{5a^3-c^3}{ac+3a^2}\le2b-a+2c-b+2a-c=a+b+c\)

9 tháng 5 2018

vậy đề sai rồi chứ mình giải mãi chả ra mà toàn ngược dấu nên mình tưởng mình sai 

27 tháng 10 2016

Xét Bất đẳng thức phụ:

\(\frac{5b^3-a^3}{ab+3b^2}\le2b-a\Leftrightarrow5b^3-a^3\le\left(2b-a\right)\left(ab+3b^2\right)\)

\(\Leftrightarrow a^2b+ab^2\le a^3+b^3\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\) (luôn đúng)

Tương tự ta có:

\(\frac{5a^3-b^3}{ab+3a^2}\le2a-c\);\(\frac{5c^3-a^3}{ac+3c^2}\le2c-b\)

Cộng lại theo vế ta có:

\(\frac{5a^3-b^3}{ab+3a^2}+\frac{5b^3-c^3}{bc+3b^2}+\frac{5c^3-a^3}{ac+3c^2}\le2b-a+2a-c+2c-b=a+b+c=2007\)

Đpcm

20 tháng 4 2020

pịa pịa pịa 

18 tháng 1 2018

BĐT ĐÚNG K BN

18 tháng 1 2018

chac dung

7 tháng 11 2015

\(\frac{5a^3-b^3}{ab+3a^2}-\left(2a-b\right)=-\frac{\left(a-b\right)^2\left(a+b\right)}{ab+3a^2}\le0\)

\(\Rightarrow\frac{5a^3-b^3}{ab+3a^2}\le2a-b\)

1 tháng 3 2019

Ta chứng minh bổ đề sau:

\(\dfrac{5b^3-a^3}{ab+3b^2}\le2b-a\)

\(\Leftrightarrow5b^3-a^3\le\left(2b-a\right)\left(ab+3b^2\right)\)

\(\Leftrightarrow5b^3-a^3\le2ab^2+6b^3-a^2b-3b^2a\)

\(\Leftrightarrow a^3+b^3-a^2b-b^2a\ge0\)

\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)-ab\left(a+b\right)\ge0\)

\(\Leftrightarrow\left(a+b\right)\left(a^2-2ab+b^2\right)\ge0\)

\(\Leftrightarrow\left(a+b\right)\left(a-b\right)^2\ge0\)

Bất đẳng thức cuối luôn đúng, vậy ta có

\(M\le2a-b+2b-c+2c-a=a+b+c\)Chứng minh hoàn tất. Đẳng thức xảy ra khi \(a=b=c\)

13 tháng 11 2016

Câu hỏi của NGUYỄN DOÃN ANH THÁI - Toán lớp 9 - Học toán với OnlineMath làm tương tự chỗ cuối thay a+b+c=2015 là dc

10 tháng 10 2019

b) Ta có:

\(\frac{a}{\sqrt{b^2+3}}+\frac{a}{\sqrt{b^2+3}}+\frac{b^2+3}{8}+\frac{a^2}{2}\)\(\ge\)\(4\sqrt[4]{\frac{a^4}{16}}=2a\)

\(\frac{b}{\sqrt{c^2+3}}+\frac{b}{\sqrt{c^2+3}}+\frac{c^2+3}{8}+\frac{b^2}{2}\ge4\sqrt[4]{\frac{b^4}{16}}=2b\)

\(\frac{c}{\sqrt{a^2+3}}+\frac{c}{\sqrt{a^2+3}}+\frac{a^2+3}{8}+\frac{c^2}{2}\ge4\sqrt[4]{\frac{c^4}{16}}=2c\)

Cộng lại ta đươc:

\(2\left(\frac{a}{\sqrt{b^2+3}}+\frac{b}{\sqrt{c^2+3}}+\frac{c}{\sqrt{a^2+3}}\right)+\)\(\frac{5\left(a^2+b^2+c^2\right)+9}{8}\)\(\ge2\left(a+b+c\right)\)

\(2\left(\frac{a}{\sqrt{b^2+3}}+\frac{b}{\sqrt{c^2+3}}+\frac{c}{\sqrt{a^2+3}}\right)\ge\)\(6-\frac{5\left(a^2+b^2+c^2\right)+9}{8}\)(1)

Lại có: \(a^2+1\ge2a\); \(b^2+1\ge2b\); \(c^2+1\ge2c\)

Suy ra \(a^2+b^2+c^2\ge2\left(a+b+c\right)-3=3\)

Khi đó (1)⇔ \(2\left(\frac{a}{\sqrt{b^2+3}}+\frac{b}{\sqrt{c^2+3}}+\frac{c}{\sqrt{a^2+3}}\right)\ge\)\(6-\frac{5.3+9}{8}=3\)

\(\frac{a}{\sqrt{b^2+3}}+\frac{b}{\sqrt{c^2+3}}+\frac{c}{\sqrt{a^2+3}}\ge\frac{3}{2}\)

Dấu "=" xảy ra ⇔ \(a=b=c=1\)

NV
10 tháng 10 2019

\(\left(a^2+3b^2\right)\left(1+3\right)\ge\left(a+3b\right)^2\Rightarrow\sqrt{a^2+3b^2}\ge\frac{a+3b}{2}\)

\(\Rightarrow P=\sum\frac{ab}{\sqrt{a^2+3b^2}}\le2\sum\frac{ab}{a+3b}=2\sum\frac{ab}{a+b+b+b}\)

\(\Rightarrow P\le\frac{1}{8}\sum ab\left(\frac{1}{a}+\frac{3}{b}\right)=\frac{1}{8}\sum\left(3a+b\right)=\frac{1}{2}\left(a+b+c\right)=\frac{3}{2}\)

"=" \(\Leftrightarrow a=b=c=1\)

1 tháng 4 2018

Ta có BĐT phụ \(\frac{5b^3-a^3}{ab+3b^2}\le2b-a\)

\(\Leftrightarrow-\frac{\left(a-b\right)^2\left(a+b\right)}{b\left(a+3b\right)}\le0\) *luôn đúng*

Tương tự cho 2 BĐT còn lại cũng có:

\(P\le2a-b+2b-c+2c-a=a+b+c=3\)

Dấu '=" khi \(a=b=c=1\)

3 tháng 5 2020

Xét \(\frac{5b^3-a^3}{ab+3b^2}-\left(2b-a\right)=\frac{5a^3-a^3-\left(ab+3b^2\right)\left(2b-a\right)}{ab+3b^2}\)

\(=\frac{5b^3-a^3-\left(2ab^2-a^2b+6b^3-3b^2a\right)}{ab+3b^2}=\frac{-b^5-a^3+a^2b+b^2a}{ab+3b^2}\)

\(=\frac{-\left(a+b\right)\left(a-b\right)^2}{ab+3b^3}\le0\)

\(\Rightarrow\frac{5b^3-a^3}{ab+3b^2}\le2b-a\)

Ta có 2 BĐT tương tự \(\hept{\begin{cases}\frac{5c^3-b^3}{bc+3c^2}\le2c-b\\\frac{5a^3-c^3}{ca+3a^2}\le2a-c\end{cases}}\)

Cộng 3 vế BĐT trên ta được \(P\le2\left(a+b+c\right)-\left(a+b+c\right)=a+b+c=3\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}a=b=c\\a+b+c=3\end{cases}\Leftrightarrow a=b=c=1}\)