Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này thiếu đề. Đề đúng là phải có \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\) nữa nha bạn.
\(\frac{a^2}{a+bc}+\frac{b^2}{b+ac}+\frac{c^2}{c+ab}\ge\frac{a+b+c}{4}\)
Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\) \(\Rightarrow ab+bc+ac=abc\)
\(VT=\frac{a^2}{a+bc}+\frac{b^2}{b+ac}+\frac{c^2}{c+ab}\)
\(\Rightarrow VT=\frac{a^2.a}{a\left(a+bc\right)}+\frac{b^2.b}{b\left(b+ac\right)}+\frac{c^2.c}{c\left(c+ab\right)}\)
\(\Leftrightarrow VT=\frac{a^3}{a^2+abc}+\frac{b^3}{b^2+abc}+\frac{c^3}{c^2+abc}\)
\(\Leftrightarrow VT=\frac{a^3}{a^2+ab+bc+ac}+\frac{b^3}{b^2+ab+bc+ac}+\frac{c^3}{c^2+ab+bc+ac}\)
\(\Leftrightarrow VT=\frac{a^3}{a\left(a+b\right)+c\left(a+b\right)}+\frac{b^3}{a\left(b+c\right)+b\left(b+c\right)}+\frac{c^3}{c\left(b+c\right)+a\left(b+c\right)}\)
\(\Leftrightarrow VT=\frac{a^3}{\left(a+c\right)\left(a+b\right)}+\frac{b^3}{\left(b+c\right)\left(a+b\right)}+\frac{c^3}{\left(b+c\right)\left(a+c\right)}\)
Áp dụng BĐT Cauchy ta có:
\(\frac{a^3}{\left(a+b\right)\left(a+c\right)}+\frac{a+b}{8}+\frac{a+c}{8}\ge3\sqrt[3]{\frac{a^3}{64}}=\frac{3a}{4}\)
\(\frac{b^3}{\left(a+b\right)\left(b+c\right)}+\frac{a+b}{8}+\frac{b+c}{8}\ge3\sqrt[3]{\frac{b^3}{64}}=\frac{3b}{4}\)
\(\frac{c^3}{\left(b+c\right)\left(a+c\right)}+\frac{b+c}{8}+\frac{a+c}{8}\ge3\sqrt[3]{\frac{c^3}{64}}=\frac{3c}{4}\)
Ta có:
\(\frac{3a}{4}+\frac{3b}{4}+\frac{3c}{4}+\frac{a+b+c}{2}\ge\frac{3}{4}\left(a+b+c\right)\)
\(\Rightarrow\frac{3a}{4}+\frac{3b}{4}+\frac{3c}{4}\ge\frac{3}{4}\left(a+b+c\right)-\frac{1}{2}\left(a+b+c\right)\)
\(\Rightarrow VT\ge\frac{a+b+c}{4}=VP\)
Dấu \("="\) xảy ra \(\Leftrightarrow a=b=c=3\)
\(\RightarrowĐpcm.\)
Áp dụng bđt Svacxo có
\(\frac{a^2}{b+c-a}+\frac{b^2}{c+a-b}+\frac{c^2}{a+b-c}\ge\frac{\left(a+b+c\right)^2}{b+c-a+c+a-b+a+b-c}=a+b+c\)
Dấu "=" tại a =b = c
bài này dùng co si nhé