Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
từ \(a^3+b^3+c^3=3abc\)
\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
Suy ra a+b+c=0 hoặc a=b=c thay vào
Ta có:
\(\dfrac{4x^2y^2}{\left(x^2+y^2\right)^2}+\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}\)
+/ Áp dụng bất đẳng thức Cauchy ta có: \(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}\ge2\left(x,y\ne0\right)\)
+/ Ta có:
\(\left(x^2-y^2\right)^2\ge0\forall x,y\)
\(\Rightarrow x^4-2x^2y^2+y^4\ge0\)
\(\Rightarrow x^4+y^4\ge2x^2y^2\)
\(\Rightarrow x^4+2x^2y^2+y^4\ge4x^2y^2\)
\(\Rightarrow(x^2+y^2)^2\ge4x^2y^2\)
Do đó:
\(\dfrac{4x^2y^2}{\left(x^2+y^2\right)^2}\ge\dfrac{4x^2y^2}{4x^2y^2}=1\)
Khi đó:
\(\dfrac{4x^2y^2}{\left(x^2+y^2\right)^2}+\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}\ge1+2=3\left(đpcm\right)\)
Phạm Phương Anh sai nặng sai nặng ngonhuminh bác vào xem thế nào
Ta có:
\(ab+bc+ca=0\)
\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\)
\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}=-\dfrac{1}{c}\)
\(\Leftrightarrow\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{3}{ab}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)=-\dfrac{1}{c^3}\)
\(\Leftrightarrow\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}=\dfrac{3}{abc}\)
Quay lại bài toán ta có:
\(B=\dfrac{bc}{a^2}+\dfrac{ca}{b^2}+\dfrac{ab}{c^2}=abc\left(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}\right)=\dfrac{3abc}{abc}=3\)
Câu trả lời hay nhất: Do a+b+c=0 =>a+b= -c
Ta có (a+b)^5=c^5
<=>a^5+5a^4b+10a^3b^2+10a^2b^3 + 5ab^4 + b^5=-c^5
<=>a^5+b^5+c^5= -5ab(a^3+2a^2b+2ab^2+b^3)
<=>a^5+b^5+c^5= -5ab( a^2(a+b)+ab(a+b)+b^2(a+b))
<=>a^5+b^5+c^5= -5ab(-c)(a^2+ab+b^2) Vì a+b= -c
<=>2(a^5+b^5+c^5)=5abc2(a^2+ab+b^2)
<=>2(a^5+b^5+c^5)=5abc(a^2+b^2+(a+b)^2)
<=>2(a^5+b^5+c^5)=5abc(a^2+b^2+(-c)^2)
<=>2(a^5+b^5+c^5)=5abc(a^2+b^2+c^2) (đpcm)
a: Xét ΔABC có
D là trung điểm của AB
E là trung điểm của AC
Do đó: DE là đường trung bình
=>DE//BC và DE=BC/2
=>DE//BF và DE=BF
=>BDEF là hình bình hành
b: Xét ΔABC có
D là trung điểm của AB
F là trung điểm của BC
Do đó: DF là đường trung bình
=>DF=AC/2(1)
Ta có: ΔAKC vuông tại K
mà KE là đường trung tuyến
nên KE=AC/2(2)
Từ (1) và (2) suy ra DF=KE
Xéttứ giác DEFK có DE//FK
nên DEFK là hình thang
mà DF=KE
nên DEFK là hình thang cân
Ta có:
\(a+b+c=0\)
\(\Leftrightarrow\left(a+b\right)^5=\left(-c\right)^5\)
\(\Leftrightarrow a^5+5a^4b+10a^3b^2+10a^2b^3+5ab^4+b^5=-c^5\)
\(\Leftrightarrow a^5+b^5+c^5=-5ab\left(a^3+2a^2b+2ab^2+b^3\right)\)
\(\Leftrightarrow a^5+b^5+c^5=-5ab\left[\left(a+b\right)\left(a^2-ab+b^2\right)+2ab\left(a+b\right)\right]\)
\(\Leftrightarrow a^5+b^5+c^5=5abc\left(a^2+ab+b^2\right)\)
\(\Leftrightarrow2\left(a^5+b^5+c^5\right)=5abc\left[a^2+b^2+\left(a^2+2ab+b^2\right)\right]\)
\(\Leftrightarrow2\left(a^5+b^5+c^5\right)=5abc\left(a^2+b^2+c^2\right)\)