Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(a=\frac{1}{x};b=\frac{1}{y};c=\frac{1}{z}\)thì \(x,y,z>0\)và ta cần chứng minh \(\frac{x}{\sqrt{3zx+yz}}+\frac{y}{\sqrt{3xy+zx}}+\frac{z}{\sqrt{3yz+xy}}\ge\frac{3}{2}\)\(\Leftrightarrow\frac{x^2}{x\sqrt{3zx+yz}}+\frac{y^2}{y\sqrt{3xy+zx}}+\frac{z^2}{z\sqrt{3yz+xy}}\ge\frac{3}{2}\)
Áp dụng BĐT Cauchy-Schwarz dạng phân thức, ta có: \(\frac{x^2}{x\sqrt{3zx+yz}}+\frac{y^2}{y\sqrt{3xy+zx}}+\frac{z^2}{z\sqrt{3yz+xy}}\ge\)\(\frac{\left(x+y+z\right)^2}{x\sqrt{3zx+yz}+y\sqrt{3xy+zx}+z\sqrt{3yz+xy}}\)
Áp dụng BĐT Cauchy-Schwarz, ta có: \(x\sqrt{3zx+yz}+y\sqrt{3xy+zx}+z\sqrt{3yz+xy}\)\(=\sqrt{x}.\sqrt{3zx^2+xyz}+\sqrt{y}.\sqrt{3xy^2+xyz}+\sqrt{y}.\sqrt{3yz^2+xyz}\)\(\le\sqrt{\left(x+y+z\right)\left[3\left(xy^2+yz^2+zx^2+xyz\right)\right]}\)
Ta cần chứng minh \(\sqrt{\left(x+y+z\right)\left[3\left(xy^2+yz^2+zx^2+xyz\right)\right]}\le\frac{2}{3}\left(x+y+z\right)^2\)
\(\Leftrightarrow\left(x+y+z\right)^4\ge\frac{9}{4}\left(x+y+z\right)\left[3\left(xy^2+yz^2+zx^2+xyz\right)\right]\)
\(\Leftrightarrow\left(x+y+z\right)^3\ge\frac{27}{4}\left(xy^2+yz^2+zx^2+xyz\right)\)(*)
Không mất tính tổng quát, giả sử \(y=mid\left\{x,y,z\right\}\)thì khi đó \(\left(y-x\right)\left(y-z\right)\le0\Leftrightarrow y^2+zx\le xy+yz\)
\(\Leftrightarrow xy^2+zx^2\le x^2y+xyz\Leftrightarrow xy^2+yz^2+zx^2+xyz\le\)\(x^2y+yz^2+2xyz=y\left(z+x\right)^2=4y.\frac{z+x}{2}.\frac{z+x}{2}\)
\(\le\frac{4}{27}\left(y+\frac{z+x}{2}+\frac{z+x}{2}\right)^3=\frac{4\left(x+y+z\right)^3}{27}\)
Như vậy (*) đúng
Đẳng thức xảy ra khi a = b = c
Sử dụng Cô si cho 2 số dương ta được
\dfrac{a^3b}{c}+\dfrac{a^3c}{b}=a^3\left(\dfrac{b}{c}+\dfrac{c}{b}\right)\ge2a^3ca3b+ba3c=a3(cb+bc)≥2a3
Làm tương tự với hai cặp số hạng còn lại và cộng các bất đẳng thức nhận được ta có
\dfrac{a^3b}{c}+\dfrac{a^3c}{b}+\dfrac{b^3c}{a}+\dfrac{b^3a}{c}+\dfrac{c^3b}{a}+\dfrac{c^3a}{b}\ge2\left(a^3+b^3+c^3\right)ca3b+ba3c+ab3c+cb3a+ac3b+bc3a≥2(a3+b3+c3) (1)
Lại theo bất đẳng thức Cô si ta được
a^3+b^3+c^3\ge3\sqrt[3]{a^3b^3c^3}=3abca3+b3+c3≥33a3b3c3=3abc (2)
Từ (1) và (2) suy ra đpcm.
Theo bất đẳng thức cô si ta có
\(\dfrac{a^3b}{c}\) + \(\dfrac{a^3c}{b}\) = a^3(b/c+c/b) ≥ 2a^3
Tương tự với 1 cặp số hạng còn lại và cộng các bất đẳng thức nhận được ta có
a^3b/c+ a^3c/b + b^3c/a+b^3a/c + c^3b/a+ c^3a/b ≥ 2(a^3+b^3+c^3) (1)
Theo bất đẳng thức cô si ta được
a^3 + b^3 +c^3 ≥ 3\(\sqrt{a^3b^3c^3}=3abc (2) \)
Từ (1) và (2) suy ra đpcm
Áp dụng BĐT \(\sqrt{xy}\le\frac{x+y}{2}\)
\(VT=\frac{2\left(a+b+c\right)}{\sqrt{4a\left(a+3b\right)}+\sqrt{4b\left(b+3c\right)}+\sqrt{4c\left(c+3a\right)}}\)
\(\Rightarrow VT\ge\frac{2\left(a+b+c\right)}{\frac{4a+a+3b}{2}+\frac{4b+b+3c}{2}+\frac{4c+c+3a}{2}}\)
\(\Rightarrow VT\ge\frac{4\left(a+b+c\right)}{8\left(a+b+c\right)}=\frac{1}{2}\) (đpcm)
Dấu "=" khi \(a=b=c\)
Áp dụng Cauchy Schwarz dạng Engel ta có :
\(\frac{a^2}{2a+3b}+\frac{b^2}{2b+3c}+\frac{c^2}{2c+3a}\ge\frac{\left(a+b+c\right)^2}{5\left(a+b+c\right)}=\frac{a+b+c}{5}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)
Bước đầu: Áp dụng bđt Cô-si cho 3 số dương có \(a+b+c\ge3\sqrt[3]{abc}\)và \(a^3b+b^3c+c^3a\ge3\sqrt[3]{a^4b^4c^4}=3abc\sqrt[3]{abc}\)
Biến đổi tương đương:
BĐT <=> \(a^3b+b^3c+c^3a\ge3abc\sqrt[3]{abc}\)(luôn đúng)
tc \(a+b+c\ge3\sqrt[3]{abc}\)
\(ab+ac+bc\ge3\sqrt[3]{a^2b^2c^2}\)
\(a^3b+b^3c+c^3a\ge3\sqrt[3]{a^3b^3c^3.a.b.c}=abc.3\sqrt[3]{abc}\ge abc\left(a+b+c\right)\)
=> dpcm