Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có : (b+c)^2 <= 2 (b^2+c^2) => a^2/a^2+(b+c)^2 >= a^2+a^2+2b^2+2c^2 = 2a^2+2b^2+2c^2/a^2+2b^2+2c^2 - 1
Tương tự b^2/b^2+(c+a)^2 >= 2a^2+2b^2+2c^2/b^2+2c^2+2a^2 - 1
c^2/c^2+(a+b)^2 >= 2a^2+2b^2+2c^2/c^2+2a^2+2b^2 - 1
=> VT >= 2.(a^2+b^2+c^2).(1/a^2+2b^2+2c^2+1/b^2+2c^2+2a^2+1/c^2+2a^2+2b^2) - 3
>= 2.(a^2+b^2+c^2).(9/a^2+2b^2+2c^2+b^2+2c^2+2a^2+c^2+2a^2+2b^2) - 3 = 2.9/5 - 3 = 3/5 => ĐPCM
Dấu "=" xảy ra <=> a=b=c >0
Ta có:
\(\left(\dfrac{a}{b}+\dfrac{b}{c}\right)^2\ge0\Rightarrow\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+2.\dfrac{a}{b}.\dfrac{b}{c}\ge0\Rightarrow\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}\ge\dfrac{2a}{c}\left(1\right)\)
Tương tự:
\(\left(\dfrac{b}{c}+\dfrac{c}{a}\right)^2\ge0\Rightarrow\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge\dfrac{2b}{a}\left(2\right)\)
\(\left(\dfrac{a}{b}+\dfrac{c}{a}\right)^2\ge0\Rightarrow\dfrac{a^2}{b^2}+\dfrac{c^2}{a^2}\ge\dfrac{2c}{b}\left(3\right)\)
Từ (1)(2)(3) cộng vế theo vế ta được:
\(2\left(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\right)\ge2\left(\dfrac{a}{c}+\dfrac{b}{a}+\dfrac{c}{b}\right)\)
\(\Rightarrow\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge\dfrac{a}{c}+\dfrac{b}{a}+\dfrac{c}{b}\)