Cho ∆ ABC vuông...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2023

loading... 

a) Tứ giác ADME có:

∠AEM = ∠ADM = ∠EAD = 90⁰ (gt)

⇒ ADME là hình chữ nhật

b) Do HI = HA (gt)

⇒ H là trung điểm của AI

Do HK = HB (gt)

⇒ H là trung điểm của BK

Tứ giác ABIK có:

H là trung điểm của AI (cmt)

H là trung điểm của BK (cmt)

⇒ ABIK là hình bình hành

⇒ IK // AB

Mà AB ⊥ AC (∆ABC vuông tại A)

⇒ IK ⊥ AC

⇒ IK là đường cao của ∆ACI

Lại có:

AH ⊥ BC (do AH là đường cao của ∆ABC)

⇒ CH ⊥ AI

⇒ CH là đường cao thứ hai của ∆ACI

∆ACI có:

IK là đường cao (cmt)

CH là đường cao (cmt)

⇒ AK là đường cao thứ ba của ∆ACI

⇒ AK ⊥ IC

22 tháng 10 2023

a: Xét tứ giác ADME có

\(\widehat{ADM}=\widehat{AEM}=\widehat{DAE}=90^0\)

=>ADME là hình chữ nhật

b: Xét tứ giác ABKI có

M là trung điểm chung của AK và BI

Do đó: ABKI là hình bình hành

=>KI//AB

mà AB\(\perp\)AC

nên KI\(\perp\)AC

Xét ΔCAI có

IK,CH là đường cao

IK cắt CH tại K

Do đó: K là trực tâm của ΔCAI

=>AK\(\perp\)IC

24 tháng 4 2018

A B C H M P Q I K R E F G

Gọi E và F lần lượt là giao điểm của tia BA và CA với PC và PB.

Dựng đỉnh thứ tư của hình chữ nhật BACG.

Do tứ giác BACG là hình chữ nhật nên A;G và trung điểm M của BC thẳng hàng

Mà P;A;M thẳng hàng => P;A;G thẳng hàng.

Dễ thấy FA//BG (Quan hệ song song vuông góc)

Áp dụng ĐL Thales cho \(\Delta\)BGP: \(\frac{PF}{FB}=\frac{PA}{AG}\)(1)

Tương tự ta có: \(\frac{PE}{EC}=\frac{PA}{AG}\)(2)

Từ (1) và (2) => \(\frac{PF}{FB}=\frac{PE}{EC}\)=> EF // BC (ĐL Thales đảo) \(\Rightarrow\frac{EA}{AB}=\frac{FA}{AC}\)(Hệ quả ĐL Thales) (3)

Ta có: \(\frac{FA}{IQ}=\frac{AC}{IH}=\frac{AB}{IB}\)(Hệ quả ĐL Thales) Suy ra: \(\frac{FA}{AC}=\frac{IQ}{IH}\)(4)

Tương tự ta cũng có tỉ lệ: \(\frac{EA}{AB}=\frac{RK}{KH}\)(5)

Từ (3);(4) và (5) => \(\frac{IQ}{IH}=\frac{RK}{KH}\). Áp dụng ĐL Thales đảo cho \(\Delta\)RHQ => IK//QR (đpcm).

22 tháng 5 2021

Xét \(\Delta HBA\) và \(\Delta ABC\) có:

        \(\widehat{ABC}\)chung

 \(\widehat{BHA}=\widehat{BAC}\left(=90^o\right)\)

\(\Rightarrow\Delta HBA~\Delta ABC\left(g.g\right)\)

b.AD ĐL Pitago vào \(\Delta ABC\) vuông tại A có:

\(BC^2=AB^2+AC^2\)

\(BC^2=12^2+16^2\)

\(BC^2=144+256=400\)

\(BC=\sqrt{400}=20\left(cm\right)\)

Vì \(\Delta HBA~\Delta ABC\)

\(\Rightarrow\frac{AH}{AB}=\frac{AC}{BC}\)

\(\Rightarrow\frac{AH}{12}=\frac{16}{20}\Rightarrow AH=\frac{12.16}{20}=9,6\left(cm\right)\)

7 tháng 12 2015

câu 2: bằng 90 độ

c3: bằng 90 độ

Anser reply image

đây na !!!!!!!!!!!!!!!!!!!!!!!!

Anser reply image