Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ta có : tam giác ABC vuông tại A
=> BAC = 90 độ (1)
có : MD vuông góc AB
=> MDA = 90 độ (2)
Ta có : ME vuông góc AC
=> MEA = 90 độ (3)
Từ (1)(2)(3) => ADME là hình chữ nhật
A B C M D E H K O I
a) Xét tứ giác ADME có \(\widehat{DAE}=\widehat{AEM}=\widehat{ADM}=90^0\)
=> ADME là hình chữ nhật
=> AM= DE
b) Gọi O là giao điểm của AM và DE => OA = OM = OD = OE (2)
Do ADME là HCN => DA = ME
=> 2DA = 2ME hay DA + AI = EM + MK (vì DA = AI; ME = MK)
=> DI = EK
Xét tứ giác DIEK có DI = EK (cmt)
DI// EK (vì CEMD là HCN)
=> DKEI là hình bình hành
Do O là trung điểm của DE => KI đi qua O
=> DE cắt IK tại O và OD = OE; OK = OI (1)
Từ (1) và (2) => DE; AM; IK đồng quy tại trung điểm O của mỗi đường
c) don't know, tự làm
a: Xét tứ giác ADME có
góc ADM=góc AEM=góc DAE=90 độ
=>ADME là hình chữ nhật
=>AD=ME
b: Xét tứ giác FDGE có
GE//FD
GE=FD
=>FDGE là hình bình hành
=>FG cắt DE tại trung điểm của mỗi đường(1)
ADME là hình chữ nhật
=>AM cắt DE tại trung điểm của mỗi đường(2)
Từ (1), (2) suy ra AM,DE,FG đồng quy
c: góc AHM=góc AEM=góc ADM=90 độ
=>A,D,H,M,E cùng thuộc đường tròn đường kính AM
=>A,D,H,M,E cùng thuộc đường tròn đường kính DE
=>góc DHE=90 độ