Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạ xem bài làm của bạn Nguyễn Võ Thảo Vy ở đường link sau:
Câu hỏi của Nguyễn Desmond - Toán lớp 8 - Học toán với OnlineMath
TL
Bn xem bài của Nguyễn Thảo Vy ở quản lí đã đưa ra nha
Hok tốt nghen
Nhớ k mik nha
Xét tứ giác ADHE có :
\(\widehat{A}\)=\(\widehat{B}\)=\(\widehat{C}\)=\(\widehat{D}\)(Vì cùng =90\(^{0^{ }}\))
=) Tứ giác ADHE là hình chữ nhật
=) AH=DE (tính chất 2 đường chéo bằng nhau)
Xét tứ giác ADHE có góc ADH=góc AEH=góc EAD=90 độ
nên ADHE là hình chữ nhật
=>góc AED=góc AHD=góc ABC
Ta có: ΔABC vuông tại A
mà AM là đường trung tuyến
nên MA=MC
=>ΔMAC cân tại M
=>góc MAC=góc MCA
=>góc MAC+góc AED=90 độ
=>AM vuông góc với DE
a) Xét t/g ABC có :
AM là trung tuyến
\(\Rightarrow\)\(AM=\frac{1}{2}BC\Leftrightarrow AM=MB=MC\)
\(\Rightarrow\)t/g AMC cân tại M ( MA = MC )
\(\Rightarrow\)\(\widehat{MAC}=\widehat{MCA}\)
Mà \(\widehat{MCA}=\widehat{HAB}\)( cùng phụ với góc HBA )
\(\Rightarrow\)\(\widehat{HAB}=\widehat{MAC}\)( đpcm )
Xét tứ giác ADHE có góc ADH=góc AEH=góc EAD=90 độ
nên ADHE là hình chữ nhật
=>góc AED=góc AHD=góc ABC
Ta có: ΔABC vuông tại A
mà AM là đường trung tuyến
nên MA=MC
=>ΔMAC cân tại M
=>góc MAC=góc MCA
=>góc MAC+góc AED=90 độ
=>AM vuông góc với DE
A B C M H D E O 1 1 2 1
a) Xét tứ giác AEHD có \(\widehat{A}=\widehat{AEH}=\widehat{ADH}=90^0\)
=> tứ giác AEHD là HCN
=> AH = DE
b) Gọi O là giao điểm của AM và DE
Xét t/giác ABC vuông tại A có AM là đường trung tuyến
=> AM = BM = CM = 1/2BC
=> t/giác AMC cân tại M => \(\widehat{A1}=\widehat{C}\) (1)
Ta có: \(\widehat{C}+\widehat{H2}=90^0\)(phụ nhau)
\(\widehat{H1}+\widehat{H2}=90^0\)(phụ nhau)
=> \(\widehat{C}=\widehat{H1}\) (2)
Từ (1) và (2) => \(\widehat{H1}=\widehat{A1}\)
Do AEHD là HCN => \(\widehat{OEA}=\widehat{HAE}\)
Ta có: \(\widehat{A1}+\)\(\widehat{E1}+\widehat{A}1=\widehat{H1}+\widehat{HAE}=90^0\)
=> t/giác AOE vuông => \(\widehat{AOE}=90^0\) => AM vuông góc với DE
c) Ta có: SABM = AH. BM/2
SAMC = AH. MC/2
Mà BM = MC => SABM = SAMC
Ta có: SABC = SABM + SAHC = 2S.AMC