Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho tam giác vuông ABC vuông tại A sao cho đường cao AH biết AB= 3 cm , AC = 4 cm , tính BC AH BH CH
Áp dụng định lý Pytago vào tam giác ABC(góc A=90) có:
BC2=AB2+AC2
<=>BC2=32+42
<=>BC2=25
<=>BC=5(cm)
Áp dụng HTL vào tam giác ABC vuông tại A có đường cao AH được:
AB.AC=BC.AH
<=>3.4=5.AH
<=> AH=\(\dfrac{3.4}{5}\)
<=>AH=2,4(cm)
Áp dụng định lý Pytago vào tam giác AHB vuông tại H có:
AB2=AH2+BH2
<=>BH2=32-2,42
<=>BH2=3,24
<=>BH=1,8(cm)
Ta có:BC=BH+CH
=>CH=BC-BH=5-1,8=3,2(cm)
Vậy BC=5cm;AH=2,4cm;BH=1,8cm;CH=3,2cm
a: \(BC=\sqrt{6^2+9^2}=3\sqrt{17}\left(cm\right)\)
\(BH=\dfrac{AB^2}{BC}=\dfrac{36}{3\sqrt{17}}=\dfrac{12}{\sqrt{17}}\left(cm\right)\)
\(HC=\dfrac{AC^2}{BC}=\dfrac{81}{3\sqrt{17}}=\dfrac{27}{\sqrt{17}}\left(cm\right)\)
b: \(AH=\sqrt{15^2-9^2}=12\left(cm\right)\)
\(BC=\dfrac{AB^2}{BH}=25\left(cm\right)\)
CH=BC-BH=16(cm)
c: \(AB=\sqrt{55^2-44^2}=33\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=26.4\left(cm\right)\)
\(BH=\dfrac{33^2}{55}=19.8\left(cm\right)\)
tam giác ABC vuông tại A nên áp dụng định lý Py-ta-go
\(\Rightarrow AB^2+AC^2=BC^2\Rightarrow AC^2=BC^2-AB^2=13^2-12^2=25\)
\(\Rightarrow AC=5\left(cm\right)\)
tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng
\(\Rightarrow AH.BC=AB.AC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{12.5}{13}=\dfrac{60}{13}\left(cm\right)\)
tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng
\(\Rightarrow AB^2=BH.BC\Rightarrow12^2=BH.13\Rightarrow BH=\dfrac{12^2}{13}=\dfrac{144}{13}\left(cm\right)\)
tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng
\(\Rightarrow AC^2=CH.BC\Rightarrow5^2=BH.13\Rightarrow BH=\dfrac{5^2}{13}=\dfrac{25}{13}\left(cm\right)\)
Ta có: \(AC=\sqrt{BC^2-AC^2}=\sqrt{13^2-12^2}=5\left(cm\right)\)
Ta có: \(AH.BC=AB.AC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{12.5}{13}=\dfrac{60}{13}\left(cm\right)\)
Ta có: \(\left\{{}\begin{matrix}AB^2=BH.BC\\AC^2=CH.BC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=\dfrac{12^2}{13}=\dfrac{144}{13}\left(cm\right)\\CH=\dfrac{AC^2}{BC}=\dfrac{5^2}{13}=\dfrac{25}{13}\left(cm\right)\end{matrix}\right.\)