AB^2=BH.BC

b)...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC vuông tại A có AH là đường cao

nên \(AB^2=BH\cdot BC\)

b: Xét ΔABC vuông tại A có AH là đường cao

nên \(AH^2=HB\cdot HC\)

c: \(AB=\sqrt{4\cdot13}=2\sqrt{13}\left(cm\right)\)

\(AC=\sqrt{9\cdot13}=3\sqrt{13}\left(cm\right)\)

28 tháng 1 2020

Câu 2:

Kẻ \(DK\perp BH.\)

\(BH\perp AC\left(gt\right)\)

=> \(DK\) // \(AC\) (từ vuông góc đến song song).

Hay \(DK\) // \(HC.\)

=> \(\widehat{KDB}=\widehat{HCD}\) (vì 2 góc đồng vị).

+ Vì \(\widehat{ABC}=\widehat{ACB}\left(cmt\right)\)

=> \(\widehat{FBD}=\widehat{HCD}.\)

\(\widehat{KDB}=\widehat{HCD}\left(cmt\right)\)

=> \(\widehat{FBD}=\widehat{KDB}.\)

Xét 2 \(\Delta\) vuông \(BFD\)\(DKB\) có:

\(\widehat{BFD}=\widehat{DKB}=90^0\)

Cạnh BD chung

\(\widehat{FBD}=\widehat{KDB}\left(cmt\right)\)

=> \(\Delta BFD=\Delta DKB\) (cạnh huyền - góc nhọn).

=> \(DF=BK\) (2 cạnh tương ứng) (1).

Nối D với H.

+ Vì \(DK\) // \(AC\left(cmt\right)\)

=> \(DK\) // \(EH.\)

=> \(\widehat{KDH}=\widehat{EHD}\) (vì 2 góc so le trong).

Xét 2 \(\Delta\) vuông \(DEH\)\(HKD\) có:

\(\widehat{DEH}=\widehat{HKD}=90^0\)

Cạnh DH chung

\(\widehat{EHD}=\widehat{KDH}\left(cmt\right)\)

=> \(\Delta DEH=\Delta HKD\) (cạnh huyền - góc nhọn).

=> \(DE=HK\) (2 cạnh tương ứng) (2).

Từ (1) và (2) => \(DF+DE=BK+HK.\)

\(BK+HK=BH\)

=> \(DF+DE=BH\left(đpcm\right).\)

Chúc bạn học tốt!

2 tháng 5 2018

help mebucminh

6 tháng 5 2018

\(\widehat{A}=\) BAO NHIÊU VẬY BẠNlolang