K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABD vuông tại D và ΔCBA vuông tại A có 

góc ABD chung

Do đó: ΔABD\(\sim\)ΔCBA

b: Xét ΔBAC vuông tại A có AD là đường cao

nên \(DA^2=DB\cdot DC\)

d: \(\dfrac{AE}{AB}+\dfrac{AF}{AC}\)

\(=\dfrac{AD^2}{AC^2}+\dfrac{AD^2}{AB^2}\)

\(=AD^2\left(\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\right)=AD^2\cdot\dfrac{1}{AD^2}=1\)

25 tháng 4 2018

Sory mình chưa đọc hết

A) Xét ACE và ABD có:

Góc BAC chung

góc AEC=gocsADB = 90

=> ACE đồng dạng với ABD

B) Xét tam giác EHB và tam giác DHC

EHB=DHC(2 góc đối đỉnh)

BEH=CDH=90

=> EHB đồng dạng với DHC

=> EH/HB = HD/HC (tính chất)

=> EH.CH=HD.HB

C) Vì BD,EC là 2 đường cao của tam giác ABC cắt nhau tại H

=> AH cũng là đường cao

=>AH vuông góc với BC

Xét AFC và FIC

ACB chung

AFC=FIC=90

=>Tam giác AFC đồng dạng với tam giác FIC

=> IF/IC=FA/FC(tính chất)

D) gọi NI cắt MF tại K

25 tháng 4 2018

BD Và CE là đường gì bạn ơi???