K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAMC và ΔDMB có

MA=MD

góc AMC=góc DMB

MC=MB

=>ΔAMC=ΔDMB

b: Xét tứ giác ABDC có

M là trung điểm chung của AD và BC

=>ABDC là hình bình hành

mà góc BAC=90 độ

nên ABDC là hình chữ nhật

=>AB vuông góc BD

c: ΔABC vuông tại A có AM là trung tuyến

nên AM=1/2BC

18 tháng 4 2020

kékduhchchdjjdjkékduhchchdjjdjkékduhchchdjjdjkékduhchchdjjdjkékduhchchdjjdj

12 tháng 9 2015

a, áp dụng định lí pytago vào tam giác ABC ta có:

              \(BC^2=AB^2+AC^2\)

               \(BC^2=3^2+4^2=25\)

               \(BC=\sqrt{25}=5\)

B, xét tam giác BAC và DCA có:

            BM=MC

            AM=MD

            góc BMA= DMC (đối đỉnh)

           => Tam giác BAC=DCA

              =>BA=DC

              Góc BAM=MDC=>BA//DC(so le trong)

cho mk xin **** nah

19 tháng 12 2016

a)Xét tứ giác ABDC : 
AM = MD ; BM = MC 
=>Tứ giác ABDC là hình bình hành 
Mà góc BAC = 90 = >Tứ giác ABDC là hcn 
b)Xét tam giác AID : 
AH= HI ; AM = MD (gt) 
=> HM song song ID ( đường tb) 
=>tứ giác BIDC la ht 
AC la trung truc AI = > tam giac ABI can tai B 
=> AB = BI ma AB = DC ( ABDC la hcn )=> BI = DC 
hay BIDC la hinh thang can 
c) Ta có góc ACB = góc AHM = góc AEF 
góc BAM = góc ABM 
mà góc ABM + góc ACM = 90 => góc AEF + góc BAM = 90 độ hay AM vuông góc EF ( đccm)

19 tháng 12 2016

tks bn

31 tháng 12 2016

A B C M D E F

Hình mik vẽ không có đo nên các trung điểm mik lấy đại, có thể hơi lêch một tí.

a,  Xét tam giác ABM và tam giác DCM

Ta có: AM = DM ( giả thiết)

          góc AMB = góc AMC ( đối đỉnh)

          BM = CM ( M là trung điểm BC)

Do đó: tam giác ABM = tam giác DCM ( c-g-c)

b, Ta có: tam giác ABM = tam giác DCM ( chứng minh trên)

            góc ABM = góc DCM

Mà hai góc này nằm ở vị trí so le trong.

Suy ra: AB // CD

c,Xét tam giác BEM và tam giác CFM

Ta có: góc EMB = góc FMC ( đối đỉnh)

              BM = CM ( M là trung điểm BC)

             góc BEM = góc CFM = 90 độ ( BE vuông góc AM, CF vuông góc DM)

Do đó: tam giác BEM = tam giác CFM( cạnh huyền, góc nhọn)

Suy ra:                EM = FM

Mà E, F, M thẳng hàng ( cùng thuộc AD)

Vậy M là trung điểm EF.

12 tháng 11 2018

a) Ta có: DE+DF=2AMDEAM+DFAM=2BDBM+DCMC=2BCBM=2DE+DF=2AM⟺DEAM+DFAM=2⟺BDBM+DCMC=2⟺BCBM=2(đúng do MB=MCMB=MC).

b) Ta có: NADM;NDAMNAMDNA∥DM;ND∥AM⟹NAMD là hình bình hành.

NA=DM⟹NA=DM.

Khi đó: NFNE=NFND.NDNE=AFAC.AN+DBAN=DMMC.BMDM=1NE=NFNFNE=NFND.NDNE=AFAC.AN+DBAN=DMMC.BMDM=1⟹NE=NF.

c) Ta có: S2FDC16SAMC.SFNASFDCSAMC.SFDCSFNA16(DCMC)2.(DCNA)216DC416MC2.DM2(DM+MC)416MC.DMDM+MC2MC.DM