K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 6 2023

a. Xét ΔHBA và ΔABC:

         \(\widehat{H}=\widehat{A}=90^0\left(gt\right)\) 

          \(\widehat{B}chung\) 

\(\Rightarrow\) ΔHBA \(\sim\) ΔABC (g.g) 

b. Vì ΔABC vuông tại A:

Theo đ/lí Py - ta - go ta có:

   \(BC^2=AB^2+AC^2\) 

   \(BC^2=12^2+16^2\) 

   \(BC^2=400\) 

\(\Rightarrow BC=\sqrt{400}=20cm\) 

Ta có: ΔHBA \(\sim\) ΔABC 

    \(\dfrac{AH}{CA}=\dfrac{BA}{BC}\) 

\(\Rightarrow\dfrac{AH}{16}=\dfrac{12}{20}\) 

\(\Rightarrow AH=9,6cm\) 

c. Ta có DE là đường phân giác \(\widehat{ADB}\) 

\(\rightarrow\dfrac{EA}{EB}=\dfrac{DA}{DB}\left(1\right)\) 

DF là đường phân giác \(\widehat{ADC}\) 

\(\rightarrow\dfrac{FC}{FA}=\dfrac{DC}{DA}\left(2\right)\) 

AD là đường phân giác \(\widehat{ABC}\) 

\(\rightarrow\dfrac{DC}{DB}=\dfrac{AC}{AB}\left(3\right)\) 

Từ (1) và (2),(3) \(\Rightarrow\) \(\dfrac{EA}{EB}.\dfrac{FC}{FA}.\dfrac{DB}{DC}=\dfrac{DA}{DB}.\dfrac{DC}{DA}.\dfrac{AC}{AB}\)  

\(\Rightarrow\dfrac{EA}{EB}.\dfrac{FC}{FA}.\dfrac{DC}{DB}=\dfrac{DB}{DC}.\dfrac{AC}{AB}=\dfrac{AB}{AC}.\dfrac{AC}{AB}=1\) 

Vậy ... 

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

=>ΔHBA đồng dạng với ΔABC

b:BC=căn 12^2+16^2=20cm

AH=12*16/20=9,6cm

17 tháng 6 2020

a) 

Xét \(\Delta\)HBA và \(\Delta\)HAC 

có: ^BHA = ^AHC = 90 độ 

^HBA = ^HAC ( cùng phụ ^HAB ) 

=> \(\Delta\)HBA ~ \(\Delta\)HAC 

b) Ta có: \(BC=\sqrt{AB^2+AC^2}=10\)cm

=> \(S\left(ABC\right)=\frac{1}{2}AB.AC=\frac{1}{2}AH.BC\)

=> \(AH=\frac{6.8}{10}=4,8\)cm

c) Tích chất phân giác

=> \(\frac{AB}{BC}=\frac{AD}{DC}\Rightarrow\frac{AD}{6}=\frac{DC}{10}=\frac{AD+DC}{6+10}=\frac{8}{16}=\frac{1}{2}\)

=> AD = 3 cm; DC = 5 cm 

Theo pi ta go trong \(\Delta\)ADB => \(BD=\sqrt{AB^2+AD^2}=\sqrt{6^2+3^2}=3\sqrt{5}\)

17 tháng 6 2020

                                                A B C D H

a) \(\Delta ABC\)vuông tại A \(\Rightarrow\widehat{ABC}+\widehat{C}=90^o\)

\(\Delta AHC\)vuông tại H \(\Rightarrow\widehat{HAC}+\widehat{C}=90^o\)

\(\Rightarrow\widehat{HAC}=\widehat{ABC}\)

Xét \(\Delta HBA\)và \(\Delta HAC\)có:+) \(\widehat{AHB}=\widehat{AHC}=90^o\)

                                                    +) \(\widehat{HAC}=\widehat{ABC}\)

\(\Rightarrow\Delta HBA~\Delta HAC\left(g-g\right)\)( đpcm )

b) \(\Delta ABC\)vuông tại A \(\Rightarrow AB^2+AC^2=BC^2\)( định lý Pytago )

\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=10\)

Xét \(\Delta ABC\)có: \(S=\frac{1}{2}AB.AC=\frac{1}{2}AH.BC\)

\(\Rightarrow AB.AC=AH.BC\)\(\Rightarrow AH=\frac{AB.AC}{BC}=\frac{6.8}{10}=4,8\)

c) \(\Delta ABC\)có BD là phân giác \(\Rightarrow\frac{AB}{BC}=\frac{AD}{DC}=\frac{6}{10}=\frac{3}{5}\)

\(\Rightarrow\frac{AD}{3}=\frac{DC}{5}=\frac{AD+DC}{3+5}=\frac{AC}{8}=\frac{8}{8}=1\)

\(\Rightarrow DC=5.1=5\)\(AD=3.1=3\)

Xét \(\Delta ABD\)vuông tại A \(\Rightarrow AB^2+AD^2=BD^2\)( định lý Pytago )

\(\Rightarrow BD=\sqrt{AB^2+AD^2}=\sqrt{6^2+3^2}=\sqrt{54}=3\sqrt{6}\)

16 tháng 7 2019

Hình bạn tự vẽ nhé...

a)

Xét tam giác BAH và tam giác ABC , có :

A^ = H^ = 90O

B^ : góc chung

=> tam giác HAB ~ tam giác ACB ( g.g)

c) 

 ADĐL pitago vào tam giác vuông ABC , có :

AB2 + AC2 = BC2

=> 122 + 166 = BC2

=> BC2 = 400

=> BC = 20 cm

Vì tam giác ACB ~ tam giác HAB , nên ta có :

 AH/ACAB/BC

=> AH/16=12/20

=> AH = 9,6 cm.

22 tháng 5 2020

giúp mình câu c, thanks

1 tháng 2 2016

câu 1: 

100 cm

 

15 tháng 2 2017

có ai giải được ko ngày mai dự giờ rồi. bài 2

9 tháng 5 2022

 

xét Tam giác HBA và Tam giác ABC có
 B Chung
Góc H=A(=90 độ)
=> tam giác HBA Đồng dạng với tam giác giác ABC (g.g)
=> AH/AC=AB/BC
(BC)^2=AB^2+AC^2
BC^2=400
BC=20
AH/AC=AB/BC => AH=AB.AC/BC=16x12/20=9.6

21 tháng 9 2022

xét Tam giác HBA và Tam giác ABC có
 B Chung
Góc H=A(=90 độ)
=> tam giác HBA Đồng dạng với tam giác giác ABC (g.g)
=> AH/AC=AB/BC
(BC)^2=AB^2+AC^2
BC^2=400
BC=20
AH/AC=AB/BC => AH=AB.AC/BC=16x12/20=9.6

21 tháng 9 2022

Tự vẽ hình nha

a) xét tam giác HAB và tam giác ABC

góc AHB = góc ABC

góc CAB : chung

Suy ra : tam giác AHB ~ tam giác ABC ( g-g )

b) Áp dụng định lí py - ta - go vào tam giác ABC ta được :

AC2 + AB2 = BC2

162 + 122 = BC2

400          = BC2

=> BC = \sqrt{400}400= 20 ( cm )

ta có tam giác HAB ~ tam giác ABC ( câu a )

=> \frac{AH}{AC}=\frac{AB}{BC}hay\frac{AH}{16}=\frac{12}{20}ACAH=BCABhay16AH=2012

=> AH = \frac{12.16}{20}=9,62012.16=9,6( cm )

Độ dài cạnh BH là 

Áp dụng định lí py - ta - go vào tam giác HBA ta được : 

AH+ BH2 = AB2

BH2          = AB2 - AH2

BH2             = 122 - 9,62

BH2              = 51,84 

=> BH       = \sqrt{51,84}51,84 = 7,2 ( cm )

c) Vì AD là đường phân giác của tam giác ABC nên :

\frac{AB}{BD}=\frac{AC}{CD}\Leftrightarrow\frac{AB}{BC-CD}=\frac{AC}{CD}BDAB=CDACBCCDAB=CDAC

                    <=>   \frac{AB.CD}{CD\left(BC-CD\right)}=\frac{AC\left(BC-CD\right)}{CD\left(BC-CD\right)}CD(BCCD)AB.CD=CD(BCCD)AC(BCCD)

                    <=>   AB.CD               =   AC(BC - CD)

                    hay   12CD                 =   16.20 - 16CD

                     <=>  12CD+ 16CD      =   320

                     <=>             28CD      =   320

                     <=>                 CD     =    \frac{320}{28}\approx11.43\left(cm\right)2832011.43(cm)

Độ dài cạnh BD là :

BD = BC - CD

BD = 20 - \frac{320}{28}28320\approx 8,57 ( cm )

18 tháng 4 2023

loading...  

15 tháng 4 2016

xét Tam giác HBA và Tam giác ABC có
 B Chung
Góc H=A(=90 độ)
=> tam giác HBA Đồng dạng với tam giác giác ABC (g.g)
=> AH/AC=AB/BC
(BC)^2=AB^2+AC^2
BC^2=400
BC=20
AH/AC=AB/BC => AH=AB.AC/BC=16x12/20=9.6