Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu b: Xet tg vuông AEH và tg vuông ABC có
^BAH = ^ACB (cùng phụ với ^ABC)
=> Tg AEH đồng dạng với tg ABC \(\Rightarrow\frac{AE}{AC}=\frac{EH}{AB}\) mà EH=AF (cạnh đối HCN)
\(\Rightarrow\frac{AE}{AC}=\frac{AF}{AB}\Rightarrow AE.AB=AF.AC\)
Câu c:
Ta có AM=BC/2==BM=CM (trong tg vuông trung tuyến thuộc cạnh huyền bằng nửa cạnh huyền)
=> tg AMC cân tại M => ^MAC = ^ACB mà ^BAH = ^ACB (cmt) => ^MAC = ^BAH (1)
Ta có ^AHE = ^ABC (cùng phụ với ^BAH) mà ^AHE = ^HAC (góc so le trong) => ^ABC = ^HAC (2)
Gọi giao của AH với EF là O xét tg AOF có
AH=EF (hai đường chéo HCN = nhau)
O là trung điểm của AH vào EF
=> OA=OF => tg AOF cân tại O => ^HAC = ^AFE (3)
Từ (2) và (3) => ^AFE = ^ABC (4)
Mà ^ABC + ^ACB = 90 (5)
Từ (1) (4) (5) => ^MAC + ^AFE = 90
Xét tg AKF có ^AKF = 180 - (^MAC + ^AFE) = 180-90=90 => AM vuông góc EF tại K
H A B C I K
a, xét tam giác AHB có : ^AHB = 90 và HI _|_ AB => AI.AB = AH^2
xét tam giác AHC có : ^AHC = 90 và HK _|_ AC => AK.AC = AH^2
=> AI.AB = AK.AC
b, xét tam giác AHC có ^AHC = 90 \(\Rightarrow\sin\widehat{C}=\frac{AH}{AC}\Leftrightarrow\sin^2\widehat{C}=\frac{AH^2}{AC^2}\)
\(\Rightarrow\sin^2\widehat{C}\cdot AC=\frac{AH^2}{AC}\) mà \(AH^2=AK\cdot AC\left(câua\right)\)
\(\Rightarrow\sin^2\widehat{C}\cdot AC=AK\)
a.Xét tam giác vuông AHC có đường cao HK ta có : \(AK.AC=AH^2\)
Xét tam giác vuông AHB có đường cao HI ta có : \(AI.AB=AH^2\) vậy \(AI.AB=AK.AC\)
b. ta có \(AK=\frac{AH^2}{AC}=\frac{AH^2}{AC^2}.AC=AC.sin^2C\)
c. ta có :
\(\frac{1}{4}=\frac{S_{AKI}}{S_{ABC}}=\frac{AK.AI}{AB.AC}=\frac{AK}{AB.AC}.\frac{AK.AC}{AB}=\frac{AK^2}{AB^2}\) nên \(AK=\frac{1}{2}AB\) tương tự \(AI=\frac{1}{2}AC\)
\(\Rightarrow KI=\frac{1}{2}CB\Rightarrow AH=\frac{1}{2}CB\Rightarrow\text{AH là đường trung tuyến của tam giác vuong}\)
AH vừa là đường trung tuyến vừa là đường cao nên ABC vuông cân
a) Chứng minh \(\Delta ABH\)đồng dạng với \(\Delta CAH\)(G.G)
\(=>\frac{BH}{AB}=\frac{AH}{AC}\) \(=>\frac{BH}{15}=\frac{3}{5}\)
\(=>BH=9\)
Mà \(AB^2=BH.BC\)
=> \(BC=\frac{15^2}{9}=25\)
=> \(HC=25-9=16\)
Ta có \(AH^2=HB.HC\)
=> \(AH^4=HB^2.HC^2\)
Mà \(\begin{cases}HB^2=BE.AB\\HC^2=CF.AC\end{cases}\)
=> \(AH^4=BE.CF.AB.AC\)
Mà \(AB.AC=AH.BC\)
=> \(AH^4=BE.CF.BC.AH\)
=> đpcm
(bn tự vẽ hình)Gọi AH giao EFtại M , AI giao EF tại N
a) xét tứ giác AEHF có: A=E=F=90o(góc)→AEHF là HCN→AM=EM=MH=MF
Ta có: ΔAHF~ΔACH(g.g)→AHF=ACH(góc) mà AHF =HAE (góc)(vì SLT do AE//HF)→ACH=HAE(góc)
Mà MA=ME(cmt)→ΔAME cân ở M→HAE=FEA(góc) do đó ACH=FEA(góc)
lại có BHE=ACH(góc)(đồng vị )→BHE=FEA(góc)
mặt khác:NAE=90o-FEA(ΔAEN vuông ở N) , B = 90o-BHE(ΔBHE vuông ở E )
→NAE=B(góc)→ΔAIB cân ở I → IB=IA
tương tự ta có :IA=IC
vậy IB=IC→I là trung điểm của BC
b) ta có : sABC=2sAEHF→SABC=4SAEF→\(\frac{SAEF}{SABC}=\frac{1}{4}\)mà ΔAEF~ΔACB(cmt)→\(\left(\frac{AF}{AB}\right)^2=\frac{1}{4}\)→\(\frac{AF}{AB}=\frac{1}{2}\)
→\(\frac{HE}{AB}=\frac{1}{2}\)(AF=HE)
→ΔAHB vuông ở H có đương cao HE=1/2 cạnh huyền→HE là đường trung tuyến của AB →ΔAHB vuông cân ở H→B=45o(góc)
→C=45o(góc)
vậy ΔABC vuông cân ở A
(câu b lm bừa nhé)