\(^{AB^2+AC^2=BH^2+HC^2+2AH^2}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2018

Vi AH vuong goc vs BC 

=> Tam giac ABH vuong tai H

=> AH^2 + BH^2 = AB^2 ( 1 )

Vi AH vuong goc vs BC

=> Tam giac AHC vuong tai H

=> AH^2 + HC^2 = AC^2 ( 2 )

Tu 1 va 2 suy ra :

AC^2 + AB^2 = HB^2 + HC^2 + AH^ + AH^2 = HB^2 + HC^2 + 2AH^2

=> dpcm

4 tháng 3 2018

(Bạn tự vẽ hình giùm)

a/ \(\Delta HAB\)vuông và \(\Delta HCB\)vuông có: AB = CB (\(\Delta ABC\)cân tại A)

Cạnh HB chung

=> \(\Delta HAB\)vuông = \(\Delta HCB\)vuông (cạnh huyền - cạnh góc vuông) => HA = HC (hai cạnh tương ứng)

b/ \(\Delta AHD\)vuông và \(\Delta CHE\)vuông có: HA = HC (cm câu a)

\(\widehat{A}=\widehat{C}\)(\(\Delta ABC\)cân tại A)

=> \(\Delta AHD\)vuông = \(\Delta CHE\)vuông (cạnh huyền - góc nhọn) => HD = HE (hai cạnh tương ứng)

c/ Ta có \(\Delta AHD\)\(\Delta CHE\)(cm câu b) => AD = CE (hai cạnh tương ứng) (1)

và AB = AC (\(\Delta ABC\)cân tại A) (2)

Lấy (2) trừ (1) => AB - AD = AC - CE

=> BD = BE => \(\Delta BDE\)cân tại B

4 tháng 3 2018

B A C H D E

6 tháng 3 2020

mình thấy đề hơi thiếu dữ kiện thì phải

6 tháng 3 2020

A B C H 1 2

a) Ta có : \(\widehat{BAC}=\widehat{A_1}+\widehat{A_2}=90^o\) (1)

Do tam giác AHC vuông ở H \(\Rightarrow\widehat{C}+\widehat{A_2}=90^o\) (2)

Từ (1) và (2) \(\Rightarrow\widehat{A_1}=\widehat{C}\)

b) Áp dụng định lý Pytago trong tam giác ta có :

\(AB^2=AH^2+BH^2\)

\(AC^2=AH^2+HC^2\)

Lại có : \(BH^2+AH^2+CH^2=CH^2+BH^2+AH^2\)

\(\Leftrightarrow AB^2+CH^2=AC^2+BH^2\) ( đpcm )

29 tháng 3 2019

Áp dụng định lý Py-ta-go vào tam giác ABH vuông tại H ta được :
AH2 + BH2 = AB2
=> AH2 = AB2 - BH2 ( 1)
Áp dụng định lý Py-ta-go vào tam giác ACH vuông tại H ta được :
AH2 + CH2 = AC2

=> AH2 = AC2 - CH2 ( 2 )
Từ ( 1), (2 )
=> AB2 - BH2 = AC2 - CH2
=> AB2 + CH2 = AC2 + BH ( đpcm )