Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: XétΔIDC vuông tại D và ΔIAB vuông tại A có
góc I chung
=>ΔIDC đồng dạng với ΔIAB
b: ΔIDC đồng dạng với ΔIAB
=>ID/IA=IC/IB
=>ID/IC=IA/IB
=>ΔIDA đồng dạng với ΔICB
=>góc IDA=góc ICB=45 độ
Bạn tự vẽ hình nha:
Gọi giao điểm của DK và AC là I, giao điểm của DK và BE là M
Ta có: góc BDM+góc MBD=90 độ ( vì tam giác BDM vuông ở M)
và góc AEB+ góc MBD=90 độ (vì tam giác ABE vuông ở A)
=> góc BDM= góc AEB
Mà góc BDM= góc ADI ( đối đỉnh) => góc AEB=góc ADI
Xét tam giác DAI và tam giác EAB có:
góc DAI=góc EAB=90 độ
AD=AE
góc ADI=góc AEB (cm)
=> tam giác DAI=tam giác EAB (g.c.g)
=> AI=AB
Mà AB=AC ( tam giác ABC cân tại A)
=> AI=AB => AI=AC => A là trung điểm của IC
Lại có DK và AH cung vuông góc vs BE => DK//AH
Xét tam giác IKC có: AH//DK và A là trung điểm của IC nên H là trung điểm của KC ( t/c đường trung bình)
=> HK=HC
k mk nha
a: Xét ΔBAN vuông tại A và ΔBMN vuông tại M có
BN chung
BA=BM
=>ΔBAN=ΔBMN
b: ΔBAN=ΔBMN
=>NA=NM
Xét ΔNAP vuông tại A và ΔNMC vuông tại M có
NA=NM
góc ANP=góc MNC
=>ΔNAP=ΔNMC
=>NP=NC
=>ΔNPC cân tại N
c: ΔNAP=ΔNMC
=>AP=MC
Xét ΔBPC có BA/AP=BM/MC
nên AM//CP
a, \(\Delta CAO~\Delta OBD\left(g-g\right)\)
\(\Rightarrow\frac{OA}{BD}=\frac{AC}{OB}\Rightarrow\frac{AB}{2BD}=\frac{2AC}{AB}\Rightarrow AB^2=4.AC.BD\)
b, \(\Delta CAO~\Delta COD\left(c-g-c\right)\Rightarrow\widehat{ACO}=\widehat{MCO}\)
\(\Delta CAO=\Delta CMO\left(ch-gn\right)\Rightarrow AC=CM\)
c, Gọi giao điểm MH và BC là N
Tương tự b, BD=MD
Do \(CA//BD\Rightarrow\frac{CA}{BD}=\frac{CN}{NB}\Rightarrow\frac{CN}{NB}=\frac{CM}{MD}\)
\(\Rightarrow MN//BD\Rightarrow NH//BD\Rightarrow\frac{NH}{BD}=\frac{NA}{BD}\Rightarrow\frac{NH}{BD}=\frac{CN}{NB}\Rightarrow\frac{NH}{BD}=\frac{NM}{BD}\)
\(\Rightarrow NM=NH\)
d, Ta có: \(S_{ABCD}=\frac{\left(CA+BD\right)AB}{2}\ge\frac{AC.BD.AB}{2}=\frac{\frac{AB^2}{4}.AB}{2}=\frac{AB^3}{8}\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}AC=BD\\AC.BD=\frac{AB^2}{4}\end{cases}\Rightarrow}AC=BD=\frac{AB}{2}\)
OK, GOOD LUCK!!!