Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a b c d e k i h
Có ; AD+DB=AB
Để ; EK+DK ≥AB thì EK>AD ; DK <DB
có;ED>AD (vì A=90 độ)
có DK<DB (vì B =45 độ )
có ED//CK ( vì EA=ED) -> EDK>EKD ->EK>ED>AD
-> KE+KD ≥AB
Ta có:
\(\left\{{}\begin{matrix}AD=AE\\\widehat{DAK}=\widehat{EAI}\\AK=AI\end{matrix}\right.\)
\(\Rightarrow\Delta DAK=\Delta EAI\)
\(\Rightarrow DK=EI\)
\(\Rightarrow KE+KD=KE+EI\ge KI\left(1\right)\)
Gọi AH là đường cao của tam giác ABC với H thuộc BC.
\(\Rightarrow AH^2+HB^2=AB^2\)
\(\Leftrightarrow AB^2=2AH^2\left(2\right)\)
Ta lại có \(\Delta KAI\) vuông tại A (cái này đễ thấy nha)
\(\Rightarrow AK^2+AI^2=KI^2\)
\(\Leftrightarrow KI^2=2AK^2\left(3\right)\)
Từ (2) và (3) ta suy ra được:
\(AB^2=2AH^2\le2AK^2=KI^2\)
\(\Leftrightarrow AB\le KI\left(4\right)\)
Từ (1) và (4) ta có: \(KE+KD\ge AB\)
A B C D E M F I K J
Trên tia đối của tia AM, lấy điểm I sao cho MI = MA. Khi đó ta có thể suy ra \(\Delta AMC=\Delta IMB\left(c-g-c\right)\)
\(\Rightarrow\widehat{MCA}=\widehat{MBI}\) hay BI // AC và BI = AC.
Gọi N là giao điểm của BI và AE. Do AE vuông góc với AC nên AE cũng vuông góc với BI. Vậy thì \(\widehat{AKI}=90^o\)
Ta thấy hai góc DAE và ABI có \(DA\perp AB;AE\perp BI\) nên \(\widehat{DAE}=\widehat{ABI}\)
Vậy thì \(\Delta DAE=\Delta ABI\left(c-g-c\right)\)
\(\Rightarrow\widehat{DEA}=\widehat{AIB}\)
Kéo dài NI cắt DE tại J, AI cắt DE tại F.
Xét tam giác vuông NEJ ta có \(\widehat{NJE}+\widehat{JEN}=90^o\)
Vậy nên \(\widehat{NJE}+\widehat{JIF}=90^o\Rightarrow\widehat{JFI}=90^o\)
Hay \(AM\perp DE.\)