Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Hình bạn tự vẽ nha !
Chứng minh
a, Áp dụng định lí Pi-ta-go vào \(\Delta ABC\) vuông tại A , ta có :
\(BC^2=AB^2+AC^2\)
\(\Rightarrow BC^2=8^2+6^2=64+36=100\)
\(\Rightarrow BC=10\)
b, Xét \(\Delta BEA\) và \(\Delta DEA\) có :
AB = AD (gt)
\(\widehat{BAE}=\widehat{DAE}\) (=1v)
AE chung
\(\Rightarrow\Delta BEA=\Delta DEA\left(c.g.c\right)\)
c, Xét \(\Delta BCD\) có CA là đường trung tuyến ứng với cạnh BD và \(EA=\dfrac{1}{3}AC\) nên E là trọng tâm của \(\Delta BCD\)
Vậy DE đi qua trung điểm của cạnh BC
![](https://rs.olm.vn/images/avt/0.png?1311)
Hình bạn tự vẽ nha.
CM
Ta có:
BA = BD (GT)
Mặt khác:
BE = 1/3 BC
=> BC là đường trung tuyến của tam giác ADC
=> E là trọng tâm của tam giác ADC
=> AK là đường trung tuyến của tam giác ADC
=> K là trung điểm của DC
=> DK = KC
![](https://rs.olm.vn/images/avt/0.png?1311)
c) Δ ABK = Δ ADK (câu b) => BK = DK (2 cạnh tương ứng)
và ABK = ADK (2 góc tương ứng)
Mà ABK + KBE = 180o (kề bù)
ADK + KDC = 180o (kề bù)
nên KBE = KDC
Xét Δ KBE và Δ KDC có:
BE = CD (gt)
KBE = KDC (cmt)
BK = DK (cmt)
Do đó, Δ KBE = Δ KDC (c.g.c)
=> BKE = DKC (2 góc tương ứng)
Lại có: BKD + DKC = 180o (kề bù)
Do đó, BKE + BKD = 180o
=> EKD = 180o
hay 3 điểm E, K, D thẳng hàng (đpcm)
Silver bulletsoyeon_Tiểubàng giảiPhương AnNguyễn Huy TúHoàng Lê Bảo NgọcTrương Hồng Hạnh giải giúp mk bài hình đó đi
![](https://rs.olm.vn/images/avt/0.png?1311)
x y A C D O B E
Kéo dài CO sao cho CO cắt DB tại E
Ta chứng minh được \(\Delta AOC=\Delta BOE\left(g-c-g\right)\)
\(\Rightarrow\) OC=OE và AC=BE
Mà \(B\in DE\) => BE+BD=DE => AC+BD=DE (1)
Do OC=OE mà \(O\in CE\) => O là trung điểm của CE. Mà \(OD\perp OC\Rightarrow OD\perp CE\) => OD là trung trực của CE => CD=ED (2)
Từ (1) và (2) => AC+BD=CD
Vậy CD=AC+BD
![](https://rs.olm.vn/images/avt/0.png?1311)
A B C D E M N
xét \(\Delta ABC\) và \(\Delta ADE\) có:
AB=AD(gt)
AC=AE(gt)
góc EAD= góc BAC(2 góc đđ)
=> \(\Delta ABC=\Delta ADE\)(c.g.c)
=>góc E= góc C
xét \(\Delta ANC\) và \(\Delta AME\) có:
AE=AC(gt)
góc E=góc C(cmt)
góc AEM=góc NAC(2 góc đđ)
=>\(\Delta ANC=\Delta AME\)(g.c.g)
=>AM=AN
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Xét ΔABC và ΔDEC có
CA=CD
\(\widehat{ACB}=\widehat{DCE}\)
CB=CE
Do đó: ΔABC=ΔDEC
b: Ta có: ΔABC=ΔDEC
nên \(\widehat{BAC}=\widehat{EDC}=90^0\)
=>AD\(\perp\)DE
c: Xét tứ giác ABDE có
AB//DE
AB=DE
Do đó: ABDE là hình bình hành
Suy ra: BD//AE
a: Xét ΔCBD có
CA là trung tuyến
CE=2/3CA
=>E là trọng tâm
=>M là trung điểm của CD
b: Xét ΔDBC có DA/DB=DM/DC
nên AM//BC và AM/BC=DA/DB=1/2
=>AM=1/2BC