Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
<=> \(2a^2+2b^2+2c^2=2ab+2bc+2ca< =>\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0< =>\)
a=b=c => 32020 = 3.a2019 <=> 32019 = a2019 => a=b=c=3
A= 12017 + 02018 + (-1)2019 = 0
Tìm x nguyên thỏa mãn$x^2\left(x^2-1\right)\left(x^2-5\right)\left(x^2-10\right)<0$x2(x2−1)(x2−5)(x2−10)<0và $\left|x\right|<5$|x|<5Bài này của lớp 6 nhưng lập bảng xét dấu
xin lỗi em mới học lớp 5
nên ko làm đựơc
nếu ai cũng vậy thì k cho nhé
Lời giải:
Ta thấy:
\(ab+bc+ac=\frac{(a+b+c)^2-(a^2+b^2+c^2)}{2}=\frac{9^2-27}{2}=27\)
Do đó: \(ab+bc+ac=a^2+b^2+c^2\)
\(\Rightarrow 2(ab+bc+ac)=2(a^2+b^2+c^2)\)
\(\Leftrightarrow 2(a^2+b^2+c^2)-2(ab+bc+ac)=0\)
\(\Leftrightarrow (a-b)^2+(b-c)^2+(c-a)^2=0\)
Vì mỗi số hạng trong tổng trên đều không âm nên để tổng của chúng bằng $0$ thì:
\((a-b)^2=(b-c)^2=(c-a)^2=0\Rightarrow a=b=c\)
Kết hợp với $a+b+c=9$ suy ra $a=b=c=3$
Do đó:
\(B=(3-4)^{2018}+(3-4)^{2019}+(3-4)^{2020}=1-1+1=1\)
Ta có:
ab+bc+ac=(a+b+c)2−(a2+b2+c2)2=92−272=27
Do đó: ab+bc+ac=a2+b2+c2
⇒2(ab+bc+ac)=2(a2+b2+c2)
⇔2(a2+b2+c2)−2(ab+bc+ac)=0
⇔(a−b)2+(b−c)2+(c−a)2=0
Vì mỗi số hạng trong tổng trên đều không âm nên để tổng của chúng bằng 0 thì:
(a−b)2=(b−c)2=(c−a)2=0⇒a=b=c
Kết hợp với a+b+c=9 suy ra a=b=c=3
Do đó: ab+bc+ac=a2+b2+c2
Ta có: \(a+b+c=9\)
\(\Leftrightarrow\left(a+b+c\right)^2=81\)
\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac=81\)
\(\Leftrightarrow27+2ab+2bc+2ac=81\)
\(\Leftrightarrow2\left(ab+bc+ac\right)=54\)
\(\Leftrightarrow ab+bc+ac=27\)
mà \(a^2+b^2+c^2=27\)
nên \(a^2+b^2+c^2=ab+ac+bc\)
\(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2ac+2bc\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\Leftrightarrow a=b=c\)
mà a+b+c=9
nên a=b=c=3
Ta có: \(B=\left(a-4\right)^{2018}+\left(b-4\right)^{2019}+\left(c-4\right)^{2020}\)
\(=\left(3-4\right)^{2018}+\left(3-4\right)^{2019}+\left(3-4\right)^{2020}\)
\(=\left(-1\right)^{2018}-1^{2019}+\left(-1\right)^{2020}\)
\(=1-1+1\)
\(=1\)
Vậy: B=1
Ta có: \(3\left(a^2+b^2+c^2\right)=\left(a+b+c\right)^2\)
\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac=3\left(a^2+b^2+c^2\right)\)
\(\Leftrightarrow2ab+2bc+2ac=2\left(a^2+b^2+c^2\right)\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)(1)
Mà \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\forall a,b,c\)
\(\Rightarrow\left(1\right)\)xảy ra \(\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\Leftrightarrow a=b=c\)
\(\Rightarrow M=ab+bc+ca-\left(a+b+c\right)+1=3a^2-3a+1\)
\(=\left(\sqrt{3}a\right)^2-2.\sqrt{3}a.\frac{\sqrt{3}}{2}+\frac{3}{4}+\frac{1}{4}\)
\(=\left(\sqrt{3}a-\frac{\sqrt{3}}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)
(Dấu "=" \(\Leftrightarrow\sqrt{3}a-\frac{\sqrt{3}}{2}=0\Leftrightarrow a=\frac{1}{2}\)
hay \(a=b=c=\frac{1}{2}\)
Vậy \(M_{min}=\frac{1}{4}\Leftrightarrow a=b=c=\frac{1}{2}\)
giả thiết \(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\) (biến đổi tương đương)
Thay xuống: \(M=3a^2-3a+1=3\left(a-\frac{1}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)
Đẳng thức xảy ra khi \(a=\frac{1}{2}\)
P/s; hướng làm là đưa về 1 biến như vậy đó, khi tính toán có thể có sai số, bạn tự check lại.
làm cái đề ra ấy, ngại viết lại đề :P
\(\Leftrightarrow2\left(a^2+b^2+c^2-ab-bc-ca\right)=4\left(a^2+b^2+c^2\right)-4\left(ab+bc+ca\right)\)
\(\Leftrightarrow2\left(a^2+b^2+c^2\right)-2\left(ab+bc+ca\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\)
\(\Rightarrow M=1^{2018}+1^{2019}+1^{2020}=1+1+1=3\)