\(a\left(b+c\right)^2+b\left(c+a\right)^2+c\left(a+b\right)^2=4abc\) v...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2017

Ta có:

\(a\left(b+c\right)^2+b\left(c+a\right)^2+c\left(a+b\right)^2=4abc\)

\(\Leftrightarrow\left(ab+ac\right)\left(b+c\right)+b\left(c^2+2ac+a^2\right)+c\left(a^2+2ab+b^2\right)=4abc\)

\(\Leftrightarrow\left(b+c\right)\left(ab+ac\right)+bc^2+2abc+ba^2+ca^2+2abc+cb^2-4abc=0\)

\(\Leftrightarrow\left(b+c\right)\left(ab+ac\right)+\left(bc^2+cb^2\right)+\left(ba^2+ca^2\right)=0\)

\(\Leftrightarrow\left(b+c\right)\left(ab+ac\right)+bc\left(b+c\right)+a^2\left(b+c\right)=0\)

\(\Leftrightarrow\left(b+c\right)\left(ab+ac+bc+a^2\right)=0\)

\(\Leftrightarrow\left(b+c\right)\left[b\left(c+a\right)+a\left(a+c\right)\right]=0\)

\(\Leftrightarrow\left(b+c\right)\left(a+b\right)\left(c+a\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}b+c=0\\a+b=0\\c+a=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}b=-c\\a=-b\\c=-a\end{matrix}\right.\)

Ta lại có:

\(a^{2013}+b^{2013}+c^{2013}=1\)

Với : \(b=-c\Leftrightarrow a^{2013}-c^{2013}+c^{2013}=1\Leftrightarrow a=1\)

\(\Rightarrow M=\dfrac{1}{a^{2015}}+\dfrac{1}{b^{2015}}+\dfrac{1}{c^{2015}}=\dfrac{1}{1}+\dfrac{-1}{c^{2015}}+\dfrac{1}{c^{2015}}=1\)

Mà do \(a,b,c\) bình đẳng nên với trường hợp nào đều là \(M=1\)

15 tháng 6 2018

Bài 1:

Ta có: \(\dfrac{a}{\sqrt{a^2+8bc}}+\dfrac{b}{\sqrt{b^2+8ac}}+\dfrac{c}{\sqrt{c^2+8ab}}=\dfrac{a^2}{a\sqrt{a^2+8bc}}+\dfrac{b^2}{b\sqrt{b^2+8ac}}+\dfrac{c^2}{c\sqrt{c^2+8ab}}\)

Áp dụng bđt Cauchy Schwarz có:

\(\dfrac{a^2}{a\sqrt{a^2+8bc}}+\dfrac{b^2}{b\sqrt{b^2+8ac}}+\dfrac{c^2}{c\sqrt{c^2+8ab}}\ge\dfrac{\left(a+b+c\right)^2}{a\sqrt{a^2+8bc}+b\sqrt{b^2+8bc}+c\sqrt{c^2+8bc}}\)

Lại sử dụng bđt Cauchy schwarz ta có:

\(a\sqrt{a^2+8bc}+b\sqrt{b^2+8ac}+c\sqrt{c^2+8ab}=\sqrt{a}\cdot\sqrt{a^3+8abc}+\sqrt{b}\cdot\sqrt{b^3+8abc}+\sqrt{c}\cdot\sqrt{c^3+8abc}\ge\sqrt{\left(a+b+c\right)\left(a^3+b^3+c^3+24abc\right)}\)

\(\Rightarrow\dfrac{a}{\sqrt{a^2+8bc}}+\dfrac{b}{\sqrt{b^2+8ac}}+\dfrac{c}{\sqrt{c^2+8ab}}\ge\dfrac{\left(a+b+c\right)^2}{\sqrt{\left(a+b+c\right)\left(a^3+b^3+c^3+24abc\right)}}=\sqrt{\dfrac{\left(a+b+c\right)^3}{a^3+b^3+c^3+24abc}}\)

=> Ta cần chứng minh: \(\left(a+b+c\right)^3\ge a^3+b^3+c^3+24abc\)

hay \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)

Áp dụng bđt Cosi ta có:

\(a+b\ge2\sqrt{ab};b+c\ge2\sqrt{bc};c+a\ge2\sqrt{ca}\)

Nhân các vế của 3 bđt trên ta đc:

\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge2\sqrt{ab}\cdot2\sqrt{bc}\cdot2\sqrt{ca}=8\sqrt{a^2b^2c^2}=8abc\)

=> Đpcm

28 tháng 1 2018

câu 1: \(VT=\dfrac{a^2}{b+c}+\dfrac{b^2}{a+c}+\dfrac{c^2}{a+b}\ge\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\dfrac{a+b+c}{2}\)

bài 1: Rút gọn: a) A= \(sin^2x+sin^2x.cot^2x\) b) B= \(\left(1-tan^2x\right).cot^2x+1-cot^2x\) c) C= \(sin^2x.tanx+cos^2x.cotx+2sinx.cosx\) d) D= \(\dfrac{1-cosx}{sin^2x}-\dfrac{1}{1+cosx}\) e) E= \(cos^2\alpha.\left(sin^2\alpha+1\right)+sin^4\alpha\) f) F= \(\dfrac{\sqrt{2}cos\alpha-2cos\left(\dfrac{\pi}{4}+2\right)}{-\sqrt{2}sin\alpha+2sin\left(\dfrac{\pi}{4}+2\right)}\) g) G= \(\left(tana-tanb\right)cot\left(a-b\right)-tana.tanb\) bài 2: cho các số dương a,b,c có a+b+c=3....
Đọc tiếp

bài 1: Rút gọn:

a) A= \(sin^2x+sin^2x.cot^2x\)

b) B= \(\left(1-tan^2x\right).cot^2x+1-cot^2x\)

c) C= \(sin^2x.tanx+cos^2x.cotx+2sinx.cosx\)

d) D= \(\dfrac{1-cosx}{sin^2x}-\dfrac{1}{1+cosx}\)

e) E= \(cos^2\alpha.\left(sin^2\alpha+1\right)+sin^4\alpha\)

f) F= \(\dfrac{\sqrt{2}cos\alpha-2cos\left(\dfrac{\pi}{4}+2\right)}{-\sqrt{2}sin\alpha+2sin\left(\dfrac{\pi}{4}+2\right)}\)

g) G= \(\left(tana-tanb\right)cot\left(a-b\right)-tana.tanb\)

bài 2: cho các số dương a,b,c có a+b+c=3. Tìm giá trị nhỏ nhất của biểu thức

P= \(\dfrac{a\sqrt{a}}{\sqrt{2c+a+b}}+\dfrac{b\sqrt{b}}{\sqrt{2a+b+c}}+\dfrac{c\sqrt{c}}{\sqrt{2b+c+a}}\)

bài 3: cho a,b,c dương sao cho \(a^2+b^2+c^2=3\). Chứng minh rằng: \(\dfrac{a^3b^3}{c}+\dfrac{a^3c^3}{b}+\dfrac{b^3c^3}{a}\ge3abc\)

bài 4: cho các số thực dương a,b,c thỏa mãn a+b+c=3. Tìm giá trị nhỏ nhất cảu biểu thức :

P= \(\dfrac{1}{a}+\dfrac{1}{b}-c\)

bài 5: Cho a,b>0, \(3b+b\le1.\) Tìm giá trị nhỏ nhất của P= \(\dfrac{1}{a}+\dfrac{1}{\sqrt{ab}}\)

5
AH
Akai Haruma
Giáo viên
27 tháng 2 2019

Bài 1:

a)

\(\sin ^2x+\sin ^2x\cot^2x=\sin ^2x(1+\cot^2x)=\sin ^2x(1+\frac{\cos ^2x}{\sin ^2x})\)

\(=\sin ^2x.\frac{\sin ^2x+\cos^2x}{\sin ^2x}=\sin ^2x+\cos^2x=1\)

b)

\((1-\tan ^2x)\cot^2x+1-\cot^2x\)

\(=\cot^2x(1-\tan^2x-1)+1=\cot^2x(-\tan ^2x)+1=-(\tan x\cot x)^2+1\)

\(=-1^2+1=0\)

c)

\(\sin ^2x\tan x+\cos^2x\cot x+2\sin x\cos x=\sin ^2x.\frac{\sin x}{\cos x}+\cos ^2x.\frac{\cos x}{\sin x}+2\sin x\cos x\)

\(=\frac{\sin ^3x}{\cos x}+\frac{\cos ^3x}{\sin x}+2\sin x\cos x=\frac{\sin ^4x+\cos ^4x+2\sin ^2x\cos ^2x}{\sin x\cos x}=\frac{(\sin ^2x+\cos ^2x)^2}{\sin x\cos x}=\frac{1}{\sin x\cos x}\)

\(=\frac{1}{\frac{\sin 2x}{2}}=\frac{2}{\sin 2x}\)

AH
Akai Haruma
Giáo viên
27 tháng 2 2019

Bài 2:

Áp dụng BĐT Cauchy Schwarz ta có:

\(P=\frac{a^2}{\sqrt{a(2c+a+b)}}+\frac{b^2}{\sqrt{b(2a+b+c)}}+\frac{c^2}{\sqrt{c(2b+c+a)}}\)

\(\geq \frac{(a+b+c)^2}{\sqrt{a(2c+a+b)}+\sqrt{b(2a+b+c)}+\sqrt{c(2b+c+a)}}(*)\)

Tiếp tục áp dụng BĐT Cauchy-Schwarz:

\((\sqrt{a(2c+a+b)}+\sqrt{b(2a+b+c)}+\sqrt{c(2b+c+a)})^2\leq (a+b+c)(2c+a+b+2a+b+c+2b+c+a)\)

\(\Leftrightarrow (\sqrt{a(2c+a+b)}+\sqrt{b(2a+b+c)}+\sqrt{c(2b+c+a)})^2\leq 4(a+b+c)^2\)

\(\Rightarrow \sqrt{a(2c+a+b)}+\sqrt{b(2a+b+c)}+\sqrt{c(2b+c+a)}\leq 2(a+b+c)(**)\)

Từ \((*); (**)\Rightarrow P\geq \frac{(a+b+c)^2}{2(a+b+c)}=\frac{a+b+c}{2}=\frac{3}{2}\)

Vậy \(P_{\min}=\frac{3}{2}\)

Dấu "=" xảy ra khi $a=b=c=1$

8 tháng 12 2018

a) Áp dụng BĐT AM - GM:

\(\dfrac{a}{b}+\dfrac{b}{a}\) >= 2\(\sqrt{\dfrac{a}{b}.\dfrac{b}{a}}\) =2

Dấu '=' xảy ra <=> a=b=1

8 tháng 12 2018

b) Cũng áp dụng BĐT AM- GM nhưng cho 3 số

30 tháng 11 2017

sky oi say oh yeah

3 tháng 1 2019

3/ Áp dụng bất đẳng thức AM-GM, ta có :

\(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}\ge2\sqrt{\dfrac{\left(ab\right)^2}{\left(bc\right)^2}}=\dfrac{2a}{c}\)

\(\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge2\sqrt{\dfrac{\left(bc\right)^2}{\left(ac\right)^2}}=\dfrac{2b}{a}\)

\(\dfrac{c^2}{a^2}+\dfrac{a^2}{b^2}\ge2\sqrt{\dfrac{\left(ac\right)^2}{\left(ab\right)^2}}=\dfrac{2c}{b}\)

Cộng 3 vế của BĐT trên ta có :

\(2\left(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\right)\ge2\left(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\right)\)

\(\Leftrightarrow\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\left(\text{đpcm}\right)\)

AH
Akai Haruma
Giáo viên
4 tháng 1 2019

Bài 1:

Áp dụng BĐT AM-GM ta có:

\(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\leq \frac{1}{2\sqrt{a^2.bc}}+\frac{1}{2\sqrt{b^2.ac}}+\frac{1}{2\sqrt{c^2.ab}}=\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ac}}{2abc}\)

Tiếp tục áp dụng BĐT AM-GM:

\(\sqrt{bc}+\sqrt{ac}+\sqrt{ab}\leq \frac{b+c}{2}+\frac{c+a}{2}+\frac{a+b}{2}=a+b+c\)

Do đó:

\(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\leq \frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2abc}\leq \frac{a+b+c}{2abc}\) (đpcm)

Dấu "=" xảy ra khi $a=b=c$

NV
2 tháng 11 2019

\(A\ge7\left(a+b+c\right)^2+12\left(a+b+c\right)^2+\frac{18135}{a+b+c}\)

Đặt \(a+b+c=x\Rightarrow0< x\le2\)

\(A\ge19x^2+\frac{18135}{x}=19x^2+\frac{152}{x}+\frac{152}{x}+\frac{17831}{x}\)

\(A\ge3\sqrt[3]{\frac{19.152.152x^2}{x^2}}+\frac{17831}{2}=\frac{18287}{2}\)