Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng giả thiết từ đề bài :
\(M=\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}\)
\(\Leftrightarrow M=\frac{a}{ab+a+abc}+\frac{b}{bc+b+1}+\frac{bc}{abc+bc+b}\)
\(\Leftrightarrow M=\frac{1}{b+1+bc}+\frac{b}{bc+b+1}+\frac{bc}{1+bc+b}\)
\(\Leftrightarrow M=\frac{1+b+bc}{b+1+bc}=1\)
Vậy M = 1
Tham khảo: Câu hỏi của Nguyễn Thị Nhàn - Toán lớp 8 - Học toán với OnlineMath
Học tốt=)
tth : mẫu nó khác bạn nhé
- mẫu nó là 2bc 2ac 2ab
mẫu mk ko có nhân 2
Lời giải:
Sử dụng điều kiện $abcd=1$ có:
\(M=\frac{a}{abc+ab+a+1}+\frac{ab}{abcd+abc+ab+a}+\frac{abc}{ab.cda+ab.cd+abc+ab}+\frac{abcd}{abc.dab+abc.da+abc.d+abc}\)
\(=\frac{a}{abc+ab+a+1}+\frac{ab}{1+abc+ab+a}+\frac{abc}{a+1+abc+ab}+\frac{1}{ab+a+1+abc}\)
\(=\frac{a+ab+abc+1}{abc+ab+a+1}=1\)
Vậy $M=1$
ta có : \(M=\dfrac{1}{abc+ab+a+1}+\dfrac{1}{bcd+bc+b+1}+\dfrac{1}{acb+cd+c+1}+\dfrac{1}{abd+ad+d+1}\)
\(\Leftrightarrow M=\dfrac{abcd}{abcd+abc+ab+a}+\dfrac{1}{bcd+bc+b+1}+\dfrac{1}{acb+cd+c+1}+\dfrac{1}{abd+ad+d+1}\) \(\Leftrightarrow M=\dfrac{bcd}{bcd+bc+b+1}+\dfrac{1}{bcd+bc+b+1}+\dfrac{1}{acb+cd+c+1}+\dfrac{1}{abd+ad+d+1}\) \(\Leftrightarrow M=\dfrac{bcd+1}{bcd+bc+b+1}+\dfrac{1}{acb+cd+c+1}+\dfrac{1}{abd+ad+d+1}\) \(\Leftrightarrow M=\dfrac{abcd+bcd}{abcd+bcd+bc+b}+\dfrac{1}{acb+cd+c+1}+\dfrac{1}{abd+ad+d+1}\) \(\Leftrightarrow M=\dfrac{acd+cd}{acd+cd+c+1}+\dfrac{1}{acb+cd+c+1}+\dfrac{1}{abd+ad+d+1}\) \(\Leftrightarrow M=\dfrac{acd+cd+1}{acd+cd+c+1}+\dfrac{1}{abd+ad+d+1}\) \(\Leftrightarrow M=\dfrac{abcd+acd+cd}{abcd+acd+cd+c}+\dfrac{1}{abd+ad+d+1}\) \(\Leftrightarrow M=\dfrac{abd+ad+d}{abd+ad+d+1}+\dfrac{1}{abd+ad+d+1}\) \(\Leftrightarrow M=\dfrac{abd+ad+d+1}{abd+ad+d+1}=1\)
Vì abcd=1 nên : a=1 ;b=1;c=1;d=1
thay số vào pt ta đc : \(\frac{1}{1+2\cdot1+3\cdot1\cdot1+4\cdot1\cdot1}\)+ \(\frac{1}{2+3\cdot1+4\cdot1\cdot1+1\cdot1\cdot1}\)+ \(\frac{1}{3+4\cdot1+1\cdot1+2\cdot1\cdot1\cdot1}\)+ \(\frac{1}{4+1+2\cdot1\cdot1+3\cdot1\cdot1\cdot1}\)
Tương đương : \(\frac{1}{10}\)+\(\frac{1}{10}\)+\(\frac{1}{10}\)+\(\frac{1}{10}\)= \(\frac{4}{10}\)=\(\frac{2}{5}\)