\(0\le a,b,c\le4\)Tìm max của P= a2+b2+...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 1 2020

Sửa đề: Chứng minh: \(2\le\frac{a^2+b^2+c^2}{a+b+c}+ab+bc+ca\le4\)

Đặt \(a+b+c=3u;ab+bc+ca=3v^2\)

\(\Rightarrow3\left(9u^2-6v^2\right)+3v^2=12\Rightarrow9u^2-6v^2+v^2=4\) (1)

\(\Rightarrow a^2+b^2+c^2=9u^2-6v^2=4-v^2\). Mặt khác từ (1) ta cũng suy ra:

\(\left(3u\right)^2=9u^2=4+5v^2\Rightarrow a+b+c=3u=\sqrt{4+5v^2}\)

Từ giả thiết ta có: \(12=3\left(a^2+b^2+c^2\right)+ab+bc+ca\ge4\left(ab+bc+ca\right)\)

\(\Rightarrow3v^2=ab+bc+ca\le3\Rightarrow0\le v\le1\) (vì \(v=\sqrt{\frac{ab+bc+ca}{3}}\ge0\)..) 

Vì vậy ta cần chứng minh: \(2\le f\left(v\right)=\frac{4-v^2}{\sqrt{4+5v^2}}+3v^2\le4\)  với \(0\le v\le1\)

Dễ thấy hàm số này đồng biến vì vậy f(v) đạt min tại v = 0 tức \(f\left(v\right)_{min}=2\)

Đạt Max tại v = 1 tức \(f\left(v\right)_{max}=4\)

Ta có đpcm.

P/s: Em mới học BĐT nên không chắc đâu, nhất là khúc mà em in đậm ấy.

23 tháng 1 2020

Quên: 

\(f\left(v\right)_{min}=2\Leftrightarrow\left(a;b;c\right)=\left(2;0;0\right)\) và các hoán vị.

\(f\left(v\right)_{max}=4\Leftrightarrow a=b=c=1\)

23 tháng 8 2021

à thêm a,b,c>0 nha 

23 tháng 8 2021

Theo BĐT Svacxo có : \(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)

\(< =>1\ge\frac{\left(a+b+c\right)^2}{3}< =>\left(a+b+c\right)^2\le3< =>a+b+c\le\sqrt{3}\)

Dấu "=" xảy ra \(< =>a=b=c=\frac{1}{\sqrt{3}}\)

13 tháng 4 2019

thay a+b+c=1 vào chỗ mẫu

sau đó mẫu đc 2c+a+b,.....

hok tốt

13 tháng 4 2019

Áp dụng bđt quen thuộc \(\frac{4}{x+y}\le\frac{1}{x}+\frac{1}{y}\left(x;y>0\right)\) được

\(\frac{ab}{c+1}=\frac{ab}{c+a+b+c}=\frac{ab}{4}.\frac{4}{\left(a+c\right)+\left(b+c\right)}\le\frac{ab}{4}\left(\frac{1}{a+c}+\frac{1}{b+c}\right)\)

Tương tự \(\hept{\begin{cases}\frac{bc}{a+1}\le\frac{bc}{4}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)\\\frac{ca}{b+1}\le\frac{ca}{4}\left(\frac{1}{a+b}+\frac{1}{b+c}\right)\end{cases}}\)

Cộng lại ta đc \(VT\le\frac{1}{4}\left(\frac{ab}{a+c}+\frac{ab}{b+c}+\frac{bc}{a+b}+\frac{bc}{a+c}+\frac{ca}{a+b}+\frac{ca}{b+c}\right)\)

                             \(=\frac{1}{4}\left[\frac{b\left(a+c\right)}{a+c}+\frac{c\left(a+b\right)}{a+b}+\frac{a\left(b+c\right)}{b+c}\right]\)

                              \(=\frac{1}{4}\left(a+b+c\right)=\frac{1}{4}\)

Dấu "=" xảy ra khi a = b = c = 1/3

18 tháng 8 2017

Xem lại đề thử đúng không nhé. Thấy sai sai sao đó