Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(\Sigma\frac{a}{b^3+ab}=\Sigma\left(\frac{1}{b}-\frac{b}{a+b^2}\right)\ge\Sigma\frac{1}{a}-\Sigma\frac{1}{2\sqrt{a}}=\Sigma\left(\frac{1}{a}-\frac{2}{\sqrt{a}}+1\right)+\Sigma\frac{3}{2\sqrt{a}}-3\)
\(\ge\Sigma\left(\frac{1}{\sqrt{a}}-1\right)^2+\frac{27}{2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)}-3\ge\frac{27}{2\sqrt{3\left(a+b+c\right)}}-3=\frac{3}{2}\)
1,
\(\frac{a}{1+\frac{b}{a}}+\frac{b}{1+\frac{c}{b}}+\frac{c}{1+\frac{a}{c}}=\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\ge\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}=\frac{2}{2}=1\left(Q.E.D\right)\)
2a)với a,b,c là các số thực ta có
\(a^2-ab+b^2=\frac{1}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2\ge\frac{1}{4}\left(a+b\right)^2\)
\(\Rightarrow\sqrt{a^2-ab+b^2}\ge\sqrt{\frac{1}{4}\left(a+b\right)^2}=\frac{1}{2}\left|a+b\right|\)
tương tự \(\sqrt{b^2-bc+c^2}\ge\frac{1}{2}\left|b+c\right|\)
tương tự \(\sqrt{c^2-ca+a^2}\ge\frac{1}{2}\left|a+c\right|\)
cộng từng vế mỗi BĐT ta được \(\sqrt{a^2-ab+b^2}+\sqrt{b^2-bc+c^2}+\sqrt{c^2-ca+a^2}\ge\frac{2\left(a+b+c\right)}{2}=a+b+c\)
dấu "=" xảy ra khi và chỉ khi a=b=c
Áp dụng bđt Holder, ta có:
\(\left(\sqrt{\frac{ab}{a^2+b^2}}+\sqrt{\frac{bc}{b^2+c^2}}+\sqrt{\frac{ca}{c^2+a^2}}\right).\left(\sqrt{\frac{ab}{a^2+b^2}}+\sqrt{\frac{bc}{b^2+c^2}}+\sqrt{\frac{ca}{c^2+a^2}}\right)\left[a^2b^2\left(a^2+b^2\right)+b^2c^2\left(b^2+c^2\right)+c^2a^2\left(c^2+a^2\right)\right]\ge\left(ab+bc+ca\right)^3=\frac{\left(a^2+b^2+c^2\right)^3}{8}\)
=>\(VT^2\ge\frac{1}{8}.\frac{\left(a^2+b^2+c^2\right)^3}{a^2b^4+a^4b^2+b^2c^4+b^4c^2+c^2a^4+c^4a^2}\)
Đặt a2=x, b2=y, c2=z
=>\(VT^2\ge\frac{1}{8}.\frac{\left(x+y+z\right)^3}{x^2y+xy^2+y^2z+y^2z+z^2x+zx^2}\)(1)
Theo bđt Schur, ta có:
\(x\left(x-y\right)\left(x-z\right)+y\left(y-z\right)\left(y-x\right)+z\left(z-x\right)\left(z-y\right)\ge0\)
<=>\(x^3+y^3+z^3+3xyz\ge x^2y+xy^2+y^2z+y^2z+z^2x+zx^2\)
<=>\(x^3+y^3+z^3+6xyz+3\left(x^2y+xy^2+y^2z+y^2z+z^2x+zx^2\right)\ge4.\left(x^2y+xy^2+y^2z+y^2z+z^2x+zx^2\right)+3xyz\)
Vì \(xyz=\left(abc\right)^2\ge0\)
=>\(\left(x+y+z\right)^3\ge4\left(x^2y+xy^2+y^2z+y^2z+z^2x+zx^2\right)\)
=>\(\frac{\left(x+y+z\right)^3}{x^2y+xy^2+y^2z+y^2z+z^2x+zx^2}\ge4\)
Thay vào (1)=>\(VT^2\ge\frac{1}{2}=>VT\ge\frac{1}{\sqrt{2}}\)
=>ĐPCM
a,b,c>=0 mới được nhé
Đặt biểu thức là A
\(\sqrt{\frac{ab}{a^2+b^2}}=\frac{\sqrt{ab\left(a^2+b^2\right)}}{a^2+b^2}>=\frac{\sqrt{2abab}}{a^2}=\frac{\sqrt{2}ab}{a^2+b^2}\)
Dấu = xảy ra khi có một trong 2 số a,b =0 hoặc a=b.
Tương tự=> A>=\(\frac{\sqrt{2}ab}{a^2+b^2}+\frac{\sqrt{2}bc}{b^2+c^2}+\frac{\sqrt{2}ca}{a^2+c^2}\)
\(\sqrt{2}A>=\frac{2ab}{a^2+b^2}+\frac{2bc}{b^2+c^2}+\frac{2ca}{c^2+a^2}\)
\(\sqrt{2}A+3>=\frac{\left(a+b\right)^2}{a^2+b^2}+\frac{\left(b+c\right)^2}{b^2+c^2}+\frac{\left(c+a\right)^2}{c^2+a^2}.\)
>=\(\frac{\left(2a+2b+2c\right)^2}{2\left(a^2+b^2+c^2\right)}=\frac{4\left(a+b+c\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}=4.\)
=>A>=1/căn 2
Dấu = xảy ra khi 2 số bằng nhau, một số =0
Ta có \(1^2=\left(\sqrt{a}\sqrt{b}+\sqrt{b}\sqrt{c}+\sqrt{c}\sqrt{a}\right)^2\le\left(a+b+c\right)\left(b+c+a\right)\)
\(\Rightarrow\left(a+b+c\right)^2\ge1\Rightarrow a+b+c\ge1\)
\(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{1}{2}\left(a+b+c\right)\ge\frac{1}{2}\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)
\(A=\frac{\frac{1}{2}a^2\left(\sqrt[3]{b}+\sqrt[3]{c}+1\right)\left[\left(\sqrt[3]{b}-\sqrt[3]{c}\right)^2+\left(\sqrt[3]{b}-1\right)^2+\left(\sqrt[3]{c}-1\right)^2\right]}{2\left(a+2\right)\left(a+\sqrt[3]{bc}\right)}\ge0\)
\(\Sigma_{cyc}\frac{a^2}{a+\sqrt[3]{bc}}=\Sigma_{cyc}A+\Sigma_{cyc}\frac{2\left(a-1\right)^2}{3\left(a+2\right)}+\frac{5}{6}\left(a+b+c\right)-1\ge\frac{5}{6}\left(a+b+c\right)-1=\frac{3}{2}\)
Áp dụng bất đẳng thức cộng mẫu số
\(\Rightarrow\frac{a^2}{a+\sqrt[3]{bc}}+\frac{b^2}{b+\sqrt[3]{ca}}+\frac{c^2}{c+\sqrt[3]{ab}}\)\(\ge\frac{\left(a+b+c\right)^2}{a+b+c+\sqrt[3]{bc}+\sqrt[3]{ca}+\sqrt[3]{ab}}\)
\(\Rightarrow\frac{a^2}{a+\sqrt[3]{bc}}+\frac{b^2}{b+\sqrt[3]{ca}}+\frac{c^2}{c+\sqrt[3]{ab}}\)\(\ge\frac{9}{3+\sqrt[3]{bc}+\sqrt[3]{ca}+\sqrt[3]{ab}}\)
Chứng minh rằng : \(\frac{9}{3+\sqrt[3]{bc}+\sqrt[3]{ca}+\sqrt[3]{ab}}\ge\frac{3}{2}\)
\(\Leftrightarrow18\ge3\left(3+\sqrt[3]{bc}+\sqrt[3]{ca}+\sqrt[3]{ab}\right)\)
\(\Leftrightarrow18\ge9+3\sqrt[3]{bc}+3\sqrt[3]{ca}+3\sqrt[3]{ab}\)
\(\Leftrightarrow9\ge3\sqrt[3]{ab}+3\sqrt[3]{bc}+3\sqrt[3]{ca}\)
Áp dụng bất đẳng thức Cauchy cho 3 bộ số thực không âm
\(\Rightarrow\hept{\begin{cases}a+b+1\ge3\sqrt[3]{ab}\\b+c+1\ge3\sqrt[3]{bc}\\c+a+1\ge3\sqrt[3]{ca}\end{cases}}\)
\(\Rightarrow2\left(a+b+c\right)+3\ge3\sqrt[3]{ab}+3\sqrt[3]{bc}+3\sqrt[3]{ca}\)
\(\Rightarrow9\ge3\sqrt[3]{ab}+3\sqrt[3]{bc}+3\sqrt[3]{ca}\left(đpcm\right)\)
Vì \(\frac{9}{3+\sqrt[3]{bc}+\sqrt[3]{ca}+\sqrt[3]{ab}}\ge\frac{3}{2}\)
Mà \(\frac{a^2}{a+\sqrt[3]{bc}}+\frac{b^2}{b+\sqrt[3]{ca}}+\frac{c^2}{c+\sqrt[3]{ab}}\ge\frac{9}{3+\sqrt[3]{bc}+\sqrt[3]{ca}+\sqrt[3]{ab}}\)
\(\Rightarrow\frac{a^2}{a+\sqrt[3]{bc}}+\frac{b^2}{b+\sqrt[3]{ca}}+\frac{c^2}{c+\sqrt[3]{ab}}\ge\frac{3}{2}\left(đpcm\right)\)
Chúc bạn học tốt !!!
BĐT <=> (nhân cả 2 vế với căn 12)
\(\sqrt{\left(1+1+4\right)\left(2a^2+2ab+2b^2\right)}+...\ge\sqrt{3.2.\left(1+1+4\right)}=6\)
có : 2a^2 +2ab + 2b^2 = a^2 + (a+b)^2 + b^2
=> (a^2 + (a+b)^2 + b^2)(1+4+1) ≥ (a+2a+2b+b)^2 ( theo bđt cauchy-schwarz 2 bộ số)
=> căn[(a^2 + (a+b)^2 + b^2)(1+4+1)] ≥ 3a+3b
CMTT với 2 cái căn còn lại
=> VT ≥ 6(a+b+c) = 6 = VP (đpcm)
dấu bằng a=b=c=1/3
\(\sqrt{a^2+ab+b^2}=\sqrt{\frac{3}{4}\left(a+b\right)^2+\frac{1}{4}\left(a-b\right)^2}\ge\frac{\sqrt{3}}{2}\left(a+b\right)\)
Tương tự hai bđt còn lại và cộng theo vế ta có đpcm.