Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
SAI ĐỀ vì nếu thử \(a=-1;b=-2;c=3\)
thì thỏa mãn đề bài nhưng \(a^2+b^2+c^2=\left(-1\right)^2+\left(-2\right)^2+3^2=14⋮̸3\)
Đầu tiên chứng minh:
\(a^3+b^3+c^3\ge ba^2+cb^2+ac^2\)
Ta có:
\(3\left(a^3+b^3+c^3\right)=\left(a^3+a^3+b^3\right)+\left(b^3+b^3+c^3\right)+\left(c^3+c^3+a^3\right)\)
\(\ge3\left(a^2b+b^2c+c^2a\right)\)
\(\Rightarrow a^3+b^3+c^3\ge ba^2+cb^2+ac^2\)
Quay lại bài toán ta có:
\(\frac{a^2}{1+b-a}+\frac{b^2}{1+c-b}+\frac{c^2}{1+a-c}\)
\(=\frac{a^4}{a^2+a^2b-a^3}+\frac{b^4}{b^2+b^2c-b^3}+\frac{c^4}{c^2+c^2a-c^3}\)
\(\ge\frac{\left(a^2+b^2+c^2\right)^2}{\left(a^2+b^2+c^2\right)+\left(a^2b+b^2c+c^2a\right)-\left(a^3+b^3+c^3\right)}\)
\(\ge\frac{\left(a^2+b^2+c^2\right)^2}{\left(a^2+b^2+c^2\right)+\left(a^3+b^3+c^3\right)-\left(a^3+b^3+c^3\right)}\)
\(=\frac{\left(a^2+b^2+c^2\right)^2}{a^2+b^2+c^2}=a^2+b^2+c^2=1\)
Áp dụng BĐT AM-GM ta có:
\(\frac{a^2}{1+b-a}+a^2\left(1+b-a\right)\ge2a^2\)
\(\frac{b^2}{1+c-b}+b^2\left(1+c-b\right)\ge2b^2\)
\(\frac{c^2}{1+a-c}+c^2\left(1+a-c\right)\ge2c^2\)
Cộng theo vế 3 BĐT trên ta có:
\(VT+a^2b+b^2c+c^2a-a^3-b^3-c^3\ge1\)
Cần chứng minh \(a^3+b^3+c^3\ge a^2b+b^2c+c^2a\)
Tiếp tục xài AM-GM \(a^3+a^3+b^3\ge3\sqrt[3]{a^6b^3}=3a^2b\)
TƯơng tự rồi cộng theo vế ta có ĐPCM
Xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)
THƯA CHỊ BÀI NÀY LÀ SAO AK, E HỌC LỚP 5 ** BIK BÀI NÀY NHÉ ~_~ !!!!!!!!!!!
ui..khó qw ~ mún giải lắm nhưng hk đc...e ms lp 7 thoy ak***ahihi^^
nè đọc cái bất đnagử thức shur và kĩ năng đặt ẩn p-q-r đi là giải ra , nên tìm kiếm trong ộng tổ google đi nhé\
đặt \(\sqrt{\frac{ab}{c}}=x;\sqrt{\frac{bc}{a}}=y;\sqrt{\frac{ca}{b}}=z\Rightarrow xy+yz+zx=1\)
\(P=\frac{ab}{ab+c}+\frac{bc}{bc+a}+\frac{ca}{ca+b}\)
\(=\frac{\frac{ab}{c}}{\frac{ab}{c}+1}+\frac{\frac{bc}{a}}{\frac{bc}{a}+1}+\frac{\frac{ca}{b}}{\frac{ca}{b}+1}=\frac{x^2}{x^2+1}+\frac{y^2}{y^2+1}+\frac{z^2}{z^2+1}\)
\(\ge\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2+\frac{\left(x+y+z\right)^2}{3}}=\frac{3}{4}\left(Q.E.D\right)\)