K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2020

Ta có: 0 <  a < 1 ; 0 < b < 1 ; 0 < c < 1 

\(\Rightarrow\hept{\begin{cases}a\left(a+1\right)< 0\\b\left(b+1\right)< 0\\c\left(c+1\right)< 0\end{cases}}\)

Cộng vế với vế. Ta được:

\(a\left(a+1\right)+b\left(b+1\right)+c\left(c+1\right)< 0\)

\(a^2+a+b^2+b+c^2+c< 0\)

\(a^2+b^2+c^2< a+b+c\)

Mà a + b + c = 2

\(\Rightarrow a^2+b^2+c^2< 2\left(đpcm\right)\)

P/s: Không chắc đâu nhé :D

4 tháng 2 2020

\(0< a< 1\Rightarrow a^2< a\)

Tương tự: \(b^2< b;c^2< c\)

=> a^2+b^2+c^2<a+b+c=2

4 tháng 2 2020

Ta có: \(0< a< 1\)

\(\Rightarrow a-1< 0\)

\(\Rightarrow a^2-a< 0\left(1\right)\)

Tương tự ta có: \(0< b< 1\Rightarrow b^2-b=a\left(2\right)\)

Và: \(0< c< 1\Rightarrow c^2-c< 0\left(3\right)\)

Cộng: \(\left(1\right)\left(2\right)\left(3\right)\) vế theo vế ta được:

\(a^2+b^2+c^2-a-b-c< 0\)

\(\Leftrightarrow a^2+b^2+c^2< a+b+c\)

\(\Leftrightarrow a^2+b^2+c^2< 2\left(a+b+c=2\right)\)

8 tháng 4 2019

Theo t thì điều kiện thế này:\(-1< a,b,c< 1\)

Vì  \(a+b+c=0;-1< a,b,c< 1\) nên trong các số a,b,c thì tồn tại 2 số có cùng dấu.Giả sử \(a>0;b>0;c< 0\)

\(a+b+c=0\Rightarrow c=-\left(a+b\right)\)

Do  \(a+b+c=0;-1< a,b,c< 1\)  nên:\(a^2+b^2+c^2< \left|a\right|+\left|b\right|+\left|c\right|\)

\(\Rightarrow a^2+b^2+c^2< a+b-z\)

\(\Rightarrow a^2+b^2+c^2< -2z< 2\)

\(\Rightarrowđpcm\)

Tham khảo chỗ này nè: Tui mới làm xong luôn :))

Câu hỏi của SSBĐ Love HT - Toán lớp 8 - Học toán với OnlineMath

5 tháng 5 2017

\(0< a,b,c< 1\) nên

\(\Rightarrow\left\{{}\begin{matrix}a^2< a\\b^2< b\\c^2< c\end{matrix}\right.\)

\(\Rightarrow a^2+b^2+c^2< a+b+c=2\)

24 tháng 6 2020

bạn ơi tại sai a^2 lại nhỏ hơn a , mình ko hiểu lắm

 

5 tháng 6 2017

Do \(a,b< 1\Rightarrow a^3< a^2< a< 1;b^3< b^2< b< 1\)Ta có:\(\left(1-a^2\right)\left(1-b\right)>0\Rightarrow1+a^2b>a^2b\)

\(\Rightarrow1+a^2b>a^3+b^3haya^3+b^3< 1+a^2b\)Tương tự \(b^3+c^3< 1+b^2c;c^3+a^3< 1+c^2a\)

\(\Rightarrow2a^3+2b^3+2c^3< 3+a^2b+b^2c+c^2a\)

Từ a+b+c=6 \(\Rightarrow\)a+b=6-c

Ta có: ab+bc+ac=9\(\Leftrightarrow\)ab+c(a+b)=9

                               \(\Leftrightarrow\)ab=9-c(a+b)

           Mà a+b=6-c (cmt)

                                \(\Rightarrow\)ab=9-c(6-c)

                                \(\Rightarrow\)ab=9-6c+c2

Ta có: (b-a)2\(\ge\)\(\forall\)b, c

  \(\Rightarrow\)b2+a2-2ab\(\ge\)0

  \(\Rightarrow\)(b+a)2-4ab\(\ge\)0

  \(\Rightarrow\)(a+b)2\(\ge\)4ab

Mà a+b=6-c (cmt)

         ab= 9-6c+c2 (cmt)

  \(\Rightarrow\)(6-c)2\(\ge\)4(9-6c+c2)

  \(\Rightarrow\)36+c2-12c\(\ge\)36-24c+4c2

  \(\Rightarrow\)36+c2-12c-36+24c-4c2\(\ge\)0

  \(\Rightarrow\)-3c2+12c\(\ge\)0

  \(\Rightarrow\)3c2-12c\(\le\)0

  \(\Rightarrow\)3c(c-4)\(\le\)0

  \(\Rightarrow\)c(c-4)\(\le\)0

\(\Rightarrow\hept{\begin{cases}c\ge0\\c-4\le0\end{cases}}\)hoặc\(\hept{\begin{cases}c\le0\\c-4\ge0\end{cases}}\)

*\(\hept{\begin{cases}c\ge0\\c-4\le0\end{cases}\Leftrightarrow\hept{\begin{cases}c\ge0\\c\le4\end{cases}\Leftrightarrow}0\le c\le4}\)

*