K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2019

a) Để chứng minh AMC = BAC ta có:

Vì M là trung trực của AC (gt)

=>MA = MC

=>\(\Delta\) ABC Cân tại M

=>góc AMC = 180 độ - 2 lần góc nhỏ

=>góc BAC  =180 độ =góc AMC ( = 180 độ - 2 lần góc C

Cách sao là chứng minh đó

Rút gọn thế này:Cho tam giác ABC cân tại A có BC>BM Đường trung trực của AC cắt tại đường thẳg BC Đường trung trực .........

b)

Ta có CM + CN = Góc MAC  180 độ ( góc kẻ bù)

=> mà góc ABC + MAN = 180 độ (đcmp_

góc ABC cân tại A =góc ABC 

=> góc ABC = góc AMC  (tam  gi cân tjai A)

c)

Mình chịu 

A NBC M

Study well :)

b: Sửa đề: CM MK=BC

MK=MA+AK

BC=BM+MC

mà MA=MC

và AK=BM

nên MK=BC

a: Ta có; M nằm trên đường trung trực của AC

nên MA=MC

=>ΔMAC cân tại M

=>góc AMC=(180 độ-góc ACB)/2=góc BAC

13 tháng 10 2019

B K E C H A D M

a)DC//BE (cùng vuông góc với AC);DB//CE (cùng vuông góc với AB) => là hình bình hành

b) hình bình hình thì 2 đường chéo giao nhau tại trung điểm mỗi đường hay DE cắt BC tại M và M là trung điểm DE

Để DE đi qua A tức là D;E;A thằng hàng

mà AE là một đường cao hay AE vuông góc BC nên D;E;A thẳng hàng tức là DE vuông góc với BC 

hình bình hành có 2 đường chéo vuông góc là hình thoi

c) tứ giác ABDC có góc DBA +góc DCA =180 nên góc BAC+ góc BDC=180

13 tháng 10 2019

Mượn hình của bạn Manh nhé!

a) Ta có: DB // CK ( \(\perp\)AB)

=> DB // CE   (1)

BH // DC ( \(\perp\) AC )

=> DC // BE  (2)

Từ (1) ; (2) => DBEC là hình bình hành.

b) +) Theo câu a) DBEC là hình bình hành 

=> Hai đường chéo BC và DE cắt nhau tại trung điểm của mỗi đường.

Mà M là trung điểm BC => M là trung điểm DE.

+) CK; BH là hai đường cao của \(\Delta ABC\)  và CK ; BH cắt nhau tại E.

=> E là trực tâm của \(\Delta ABC\)

=> AE là đường cao hạ từ A. (3)

Theo giả thiết DE qua A  mà DE cắt BC tại M là trung điểm cạnh  BC

=> AE qua trung điểm của cạnh BC

=>  AE là đường trung tuyến  của \(\Delta ABC\) (4)

Từ (3); (4) => \(\Delta ABC\) cân tại A

c) Em tham khảo bài làm bạn Manh.

22 tháng 4 2017

Giải bài 44 trang 80 SGK Toán 8 Tập 2 | Giải toán lớp 8

24 tháng 9 2019

a, tam giác ABC cân tại A (gt)

=> góc B = góc C (đl)

xét tam giác HBD và tam giác KCE có : BD = CE (gt)

góc BHD = góc EKC = 90 do DH _|_ AB; EK _|_ AC (gt)

=> tam giác HBD = tam giác KCE (ch-gn)

29 tháng 3 2018

https://tranvantoancv.violet.vn/present/show/entry_id/11065326

3 tháng 5 2019

a) Xét ΔABD và ΔACD có:

AB = AC (gt)

BAD = CAD (gt)

cạnh AD chung

=> ΔABD = ΔACD (c.g.c) ( có thể CM theo g.c.g )

b) Vì ΔABD = ΔACD, ta có:

DC = DB ( hai cạnh tương ứng )

Mà tia AD cắt BC tại D ( D ∈ BC )

=> AD là đường trung tuyến ΔABC

=> G là trọng tâm ΔABC ( giao điểm hai đường trung tuyến )

c) Xét ΔEHC và ΔEHD có:

CH = DH (gt)

EHC = EHD ( = 90 o )

EH cạnh chung

=> ΔEHC = ΔEHD (c.g.c)

=> C = D

EC = ED

=> ΔDEC cân

14 tháng 8 2019

đề sai \(BM+CN>\frac{3}{2}BC\)\(\Leftrightarrow\)\(2BM+2CN>3BC\)\(\Leftrightarrow\)\(AB+AC>3BC\) không phải tam giác nào cũng có 3 cạnh thoả mãn bđt này, bn xem lại đề nhé