Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì Δ ABC=Δ PQR
=>∠B=∠C=55o
∠A=∠P
∠C=∠R
Xét ΔABC có
∠A+∠B+∠C=180o (Đl tổng 3 góc trong Δ)
=>∠A+55o +∠C=180o
=> ∠A+∠C=125o
ta có 3∠A=2∠B=>\(\dfrac{\widehat{A}}{2}=\dfrac{\widehat{B}}{3}\) và ∠A+∠C=125o
Áp dụng dãy tỉ số bằng nhau ta có
\(\dfrac{\widehat{A}}{2}=\dfrac{\widehat{B}}{3}=\dfrac{\widehat{A}+\widehat{B}}{2+3}=\dfrac{125^o}{5}=25^{ }\)
=>∠A=∠P=50o
∠C=∠R=75o
vậy ......
Ta có:
A+B+C=180o(tổng 3 góc trong 1 tam giác)
\(\rightarrow\)C+C=180o
\(\rightarrow\)C=90o=A+B
Lại có:
2A=3B\(\Rightarrow\)B=\(\frac{2}{3}\)A
\(\Rightarrow\)A+B=90o
\(\Rightarrow\)\(\frac{2}{3}\)A+A=90o
\(\Rightarrow\)A\(\times\)(\(\frac{2}{3}\)+1)=90o
\(\Rightarrow\)A\(\times\)\(\frac{5}{3}\)=90o
\(\Rightarrow\)A=54o
Vậy A=54o
Học tốt
t/g ABC có ABC +ACB=180-120=60
2CBD+2ECB=60
CBD+ECB=60:2=30
Xét t/g OBC có:BOC+CBD+ECB=180
BOC =180-30
BOC =150
MÀ BOM+CON+MON=160
NÊN MON =150-30-30
MON =90
Bài 1:
a: \(\widehat{C}< \widehat{B}\)
nên AB<AC
Xét ΔBAC có AB<AC
mà HB là hình chiếu của AB trên BC
và HC là hình chiếu của AC trên BC
nên HB<HC
b: Xét ΔDBC có
HB<HC
HB là hình chiếu của DBtrên BC
HC là hình chiếu của DC trên BC
Do đó: DB<DC
=>\(\widehat{DCB}< \widehat{DBC}\)
\(\Delta ABC\) có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\text{ ( Tổng 3 góc tam giac ) }\)
\(\Rightarrow\widehat{A}+\widehat{C}=180^o-\widehat{B}=180^o-55^o=125^o\)
Ta có: \(3\widehat{A}=2\widehat{B}\Rightarrow\dfrac{\widehat{A}}{2}=\dfrac{\widehat{B}}{3}\)
\(\dfrac{\widehat{A}}{2}=\dfrac{\widehat{B}}{3}=\dfrac{\widehat{A}+\widehat{B}}{2+3}=\dfrac{125}{5}=25\) ( Áp dụng tính chất dãy tỉ số bằng nhau )
\(\dfrac{\widehat{A}}{2}=25\Rightarrow\widehat{A}=25.2=50^o\)
\(\dfrac{\widehat{B}}{3}=25\Rightarrow\widehat{B}=25.3=75^o\)
Vì \(\Delta ABC=\Delta PQR\left(gt\right)\)
\(\Rightarrow\widehat{A}=\widehat{P}=55^o\)
\(\Rightarrow\widehat{B}=\widehat{Q}=50^o\)
\(\Rightarrow\widehat{C}=\widehat{R}=75^o\)
Vậy \(\widehat{P}=55^o\\ \widehat{Q}=50^o\\ \widehat{R}=75^o\)