K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAOB và ΔEOC có

OA=OE

\(\widehat{AOB}=\widehat{EOC}\)

OB=OC

Do đó: ΔAOB=ΔEOC

b: Xét tứ giác ABEC có

O là trung điểm của AE

O là trung điểm của BC

Do đó: ABEC là hình bình hành

Suy ra: AB=EC và AB//EC

AH
Akai Haruma
Giáo viên
26 tháng 12 2022

Lời giải:
a. Xét tam giác $AOB$ và $EOC$ có:

$\widehat{AOB}=\widehat{EOC}$ (đối đỉnh)

$AO=EO$ (gt)

$OB=OC$ (do $O$ là trung điểm $BC$)

$\Rightarrow \triangle AOB=\triangle EOC$ (c.g.c)

b.

Từ tam giác bằng nhau phần a suy ra:

$AB=EC$ (đpcm)

$\widehat{OAB}=\widehat{OEC}$. Mà 2 góc này ở vị trí so le trong nên $AB\parallel CE$ (đpcm)

c.

Xét tam giác $BMC$ và $CNB$ có:

$\widehat{BMC}=\widehat{CNB}=90^0$

$BC$ chung

$\widehat{MBC}=\widehat{NCB}$ (so le trong)

$\Rightarrow \triangle BMC=\triangle CNB$ (g.c.g)

$\Rightarrow BM=NC$

Xét tam giác $BMO$ và $CNO$ có:

$BM=CN$ (cmt)

$\widehat{MBO}=\widehat{NCO}$ (so le trong)

$BO=CO$

$\Rightarrow \triangle BMO=\triangle CNO$ (c.g.c)

$\Rightarrow \widehat{BOM}=\widehat{CON}$

$\Rightarrow \widehat{BOM}+\widehat{BON}=\widehat{CON}+\widehat{BON}$

$\Rightarrow \widehat{MON}=\widehat{BOC}=180^0$

$\Rightarrow M, O, N$ thẳng hàng.

AH
Akai Haruma
Giáo viên
26 tháng 12 2022

Hình vẽ:

a: Ta có: ΔBDC vuông tại D

mà DO là đường trung tuyến

nên DO=BC/2

12 tháng 12 2015

a​. Xét tam giac ABM và tam giac ACM có

​AB=AC(gt)

​góc B=góc C(tam giac ABC cân)

​AM cạnh chung​

​suy ra tam giac ABM=tam giac ACM

​b. ta có:

​tam giác ABC cân mà AM là đường trung tuyến nên AM cũng là đường cao

​suy ra AM vuông goc vs BC

10 tháng 1 2018

A B C M N F E

a) Xét \(\Delta BNM\)và \(\Delta ACM\)có :

NM = MC ( gt )

\(\widehat{NMB}=\widehat{CMA}\)( hai góc đối đỉnh )

MB = MA ( gt )

Suy ra : \(\Delta BNM\)\(\Delta ACM\)( c.g.c )

\(\Rightarrow NB=AC\)( hai cạnh tương ứng )

\(\Rightarrow\widehat{BNM}=\widehat{ACM}\)( hai góc tương ứng )

Mà hai góc này ở vị trí so le trong nên NB // AC

b) Xét \(\Delta BNC\)có \(\widehat{EBC}\)là góc ngoài nên \(\widehat{EBC}\)\(\widehat{BNC}+\widehat{BCN}\)hay \(\widehat{EBC}\)\(\widehat{ACM}+\widehat{BCN}=\widehat{ACB}\)

Xét \(\Delta BEC\)và \(\Delta BAC\)có :

BE = AC ( vì NB = BE = AC )

\(\widehat{EBC}\)\(\widehat{ACB}\)( cmt )

BC ( cạnh chung )

Suy ra : \(\Delta BEC\)\(\Delta BAC\)( c.g.c )

\(\Rightarrow AB=EC\)( hai cạnh tương ứng )

c) Vì \(\widehat{EFC}=\widehat{AFB}\)( hai góc đối đỉnh )

Mà \(\widehat{AFB}=180^o-\widehat{AFC}\) 

\(\Rightarrow\widehat{EFC}+\widehat{AFC}=180^o-\widehat{AFC}+\widehat{AFC}=180^o\)

\(\Rightarrow\widehat{AFE}\)là góc bẹt nên A,F,E thẳng hàng

12 tháng 3 2017

câu d vẽ tam giác đều ACO .từ o kẻ đường vuông góc với hk tại p.tam giác  CAH  BẰNG tam giác COP cạnh huyền góc nhọn.                 suy ra CP=AH SUY RA PK=PC=AH.tam giác OKP BẰNG tam giác OCP C.G.C                                                                                              SUY RA GÓC OKC = 15 . GÓC AKC=30 suy ra góc KAC = 180-30-75=75 SUY RA BAK=45

12 tháng 3 2017

góc BAK=45

2 tháng 2 2021
hereNhãn

opend up

6 tháng 2 2021

a) Xét ΔABF và ΔCNF có:

       AF = CF (F là trung điểm của AC)

        ∠AFB = CFN (2 góc đối đỉnh)

        FB = FN (gt)

⇒ ΔABF = ΔCNF (c.g.c)

⇒ ∠ABF = ∠CNF (2 góc tương ứng)

mà 2 góc này ở vị trí so le trong  ⇒ AB // NC

Xét ΔACE và ΔBME có:

      AE = BE (E là trung điểm của AB)

      ∠AEC = ∠BEM (2 góc đối đỉnh)

       EC = EM (gt)

⇒ ΔACE = ΔBME (c.g.c)

⇒ ∠ACE = ∠BME (2 góc tương ứng)

mà 2 góc này ở vị trí so le trong  ⇒ AC // MB

b) Xét ΔANF và ΔCBF có:

        AF = CF (F là trung điểm của AC)

        ∠AFN = ∠CFB (2 góc đối đỉnh)

         FN = FB (gt)

⇒ ΔANF = ΔCBF (c.g.c)

⇒ ∠ANF = ∠CBF (2 góc tương ứng)

mà 2 góc này ở vị trí so le trong ⇒ AN // BC (1)

Xét ΔAME và ΔBCE có:

      AE = BE (E là trung điểm của AB)

      ∠AEM = ∠BEC (2 góc đối đỉnh)

       EM = EC (gt)

⇒ ΔAME = ΔBCE (c.g.c)

⇒ ∠AME = ∠BCE (2 góc tương ứng)

mà 2 góc ở vị trí so le trong ⇒ AM // BC (2)

Từ (1) và (2) ⇒ 3 điểm M, A, N thẳng hàng

c) Ta có: ΔANF = ΔCBF (theo b)

⇒ AN = BC (2 cạnh tương ứng) (3)

Ta có: ΔAME = ΔBCE (theo b)

⇒ AM = BC (2 cạnh tương ứng) (4)

Từ (3) và (4) ⇒ AM = AN

image