K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
26 tháng 12 2022

Lời giải:
a. Xét tam giác $AOB$ và $EOC$ có:

$\widehat{AOB}=\widehat{EOC}$ (đối đỉnh)

$AO=EO$ (gt)

$OB=OC$ (do $O$ là trung điểm $BC$)

$\Rightarrow \triangle AOB=\triangle EOC$ (c.g.c)

b.

Từ tam giác bằng nhau phần a suy ra:

$AB=EC$ (đpcm)

$\widehat{OAB}=\widehat{OEC}$. Mà 2 góc này ở vị trí so le trong nên $AB\parallel CE$ (đpcm)

c.

Xét tam giác $BMC$ và $CNB$ có:

$\widehat{BMC}=\widehat{CNB}=90^0$

$BC$ chung

$\widehat{MBC}=\widehat{NCB}$ (so le trong)

$\Rightarrow \triangle BMC=\triangle CNB$ (g.c.g)

$\Rightarrow BM=NC$

Xét tam giác $BMO$ và $CNO$ có:

$BM=CN$ (cmt)

$\widehat{MBO}=\widehat{NCO}$ (so le trong)

$BO=CO$

$\Rightarrow \triangle BMO=\triangle CNO$ (c.g.c)

$\Rightarrow \widehat{BOM}=\widehat{CON}$

$\Rightarrow \widehat{BOM}+\widehat{BON}=\widehat{CON}+\widehat{BON}$

$\Rightarrow \widehat{MON}=\widehat{BOC}=180^0$

$\Rightarrow M, O, N$ thẳng hàng.

AH
Akai Haruma
Giáo viên
26 tháng 12 2022

Hình vẽ:

a: Ta có: ΔBDC vuông tại D

mà DO là đường trung tuyến

nên DO=BC/2

12 tháng 12 2015

a​. Xét tam giac ABM và tam giac ACM có

​AB=AC(gt)

​góc B=góc C(tam giac ABC cân)

​AM cạnh chung​

​suy ra tam giac ABM=tam giac ACM

​b. ta có:

​tam giác ABC cân mà AM là đường trung tuyến nên AM cũng là đường cao

​suy ra AM vuông goc vs BC

10 tháng 1 2018

A B C M N F E

a) Xét \(\Delta BNM\)và \(\Delta ACM\)có :

NM = MC ( gt )

\(\widehat{NMB}=\widehat{CMA}\)( hai góc đối đỉnh )

MB = MA ( gt )

Suy ra : \(\Delta BNM\)\(\Delta ACM\)( c.g.c )

\(\Rightarrow NB=AC\)( hai cạnh tương ứng )

\(\Rightarrow\widehat{BNM}=\widehat{ACM}\)( hai góc tương ứng )

Mà hai góc này ở vị trí so le trong nên NB // AC

b) Xét \(\Delta BNC\)có \(\widehat{EBC}\)là góc ngoài nên \(\widehat{EBC}\)\(\widehat{BNC}+\widehat{BCN}\)hay \(\widehat{EBC}\)\(\widehat{ACM}+\widehat{BCN}=\widehat{ACB}\)

Xét \(\Delta BEC\)và \(\Delta BAC\)có :

BE = AC ( vì NB = BE = AC )

\(\widehat{EBC}\)\(\widehat{ACB}\)( cmt )

BC ( cạnh chung )

Suy ra : \(\Delta BEC\)\(\Delta BAC\)( c.g.c )

\(\Rightarrow AB=EC\)( hai cạnh tương ứng )

c) Vì \(\widehat{EFC}=\widehat{AFB}\)( hai góc đối đỉnh )

Mà \(\widehat{AFB}=180^o-\widehat{AFC}\) 

\(\Rightarrow\widehat{EFC}+\widehat{AFC}=180^o-\widehat{AFC}+\widehat{AFC}=180^o\)

\(\Rightarrow\widehat{AFE}\)là góc bẹt nên A,F,E thẳng hàng

12 tháng 3 2017

câu d vẽ tam giác đều ACO .từ o kẻ đường vuông góc với hk tại p.tam giác  CAH  BẰNG tam giác COP cạnh huyền góc nhọn.                 suy ra CP=AH SUY RA PK=PC=AH.tam giác OKP BẰNG tam giác OCP C.G.C                                                                                              SUY RA GÓC OKC = 15 . GÓC AKC=30 suy ra góc KAC = 180-30-75=75 SUY RA BAK=45

12 tháng 3 2017

góc BAK=45

2 tháng 2 2021
hereNhãn

opend up

6 tháng 2 2021

a) Xét ΔABF và ΔCNF có:

       AF = CF (F là trung điểm của AC)

        ∠AFB = CFN (2 góc đối đỉnh)

        FB = FN (gt)

⇒ ΔABF = ΔCNF (c.g.c)

⇒ ∠ABF = ∠CNF (2 góc tương ứng)

mà 2 góc này ở vị trí so le trong  ⇒ AB // NC

Xét ΔACE và ΔBME có:

      AE = BE (E là trung điểm của AB)

      ∠AEC = ∠BEM (2 góc đối đỉnh)

       EC = EM (gt)

⇒ ΔACE = ΔBME (c.g.c)

⇒ ∠ACE = ∠BME (2 góc tương ứng)

mà 2 góc này ở vị trí so le trong  ⇒ AC // MB

b) Xét ΔANF và ΔCBF có:

        AF = CF (F là trung điểm của AC)

        ∠AFN = ∠CFB (2 góc đối đỉnh)

         FN = FB (gt)

⇒ ΔANF = ΔCBF (c.g.c)

⇒ ∠ANF = ∠CBF (2 góc tương ứng)

mà 2 góc này ở vị trí so le trong ⇒ AN // BC (1)

Xét ΔAME và ΔBCE có:

      AE = BE (E là trung điểm của AB)

      ∠AEM = ∠BEC (2 góc đối đỉnh)

       EM = EC (gt)

⇒ ΔAME = ΔBCE (c.g.c)

⇒ ∠AME = ∠BCE (2 góc tương ứng)

mà 2 góc ở vị trí so le trong ⇒ AM // BC (2)

Từ (1) và (2) ⇒ 3 điểm M, A, N thẳng hàng

c) Ta có: ΔANF = ΔCBF (theo b)

⇒ AN = BC (2 cạnh tương ứng) (3)

Ta có: ΔAME = ΔBCE (theo b)

⇒ AM = BC (2 cạnh tương ứng) (4)

Từ (3) và (4) ⇒ AM = AN

image