K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
17 tháng 2 2020
a) Dễ thấy: góc MQA=90độ
MA, MC là 2 tiếp tuyến nên MO vuông góc với AC hay góc MIA=90 độ
suy ra AIQM là tứ giác nội tiếp
b) AIQM là tứ giác nội tiếp nên: góc IMQ = góc QAI
mà góc QAI = góc QBC nên góc IMQ = góc QBC
Hay OM // BC
a: Xét (O) có
ΔABC nội tiếp
BC là đường kính
Do đó: ΔABC vuông tại A
=>AB\(\perp\)AC
mà OM\(\perp\)AC
nên OM//AB
b: ΔOAC cân tại O
mà OM là đường cao
nên OM là phân giác của \(\widehat{AOC}\)
Xét ΔOAN và ΔOCN có
OA=OC
\(\widehat{AON}=\widehat{CON}\)
ON chung
Do đó: ΔOAN=ΔOCN
=>\(\widehat{OAN}=\widehat{OCN}=90^0\)
=>CN là tiếp tuyến của (O)
c:
Xét (O) có
\(\widehat{ABC}\) là góc nội tiếp chắn cung AC
Do đó: \(\widehat{AOC}=2\cdot\widehat{ABC}=2\cdot60^0=120^0\)
Xét ΔBAC vuông tại A có \(sinABC=\dfrac{AC}{BC}\)
=>\(\dfrac{AC}{2R}=sin60=\dfrac{\sqrt{3}}{2}\)
=>\(AC=R\sqrt{3}\)
ΔOAN=ΔOCN
=>NA=NC(1)
Xét tứ giác OANC có
\(\widehat{OCN}+\widehat{OAN}=90^0+90^0=180^0\)
nên OANC là tứ giác nội tiếp
=>\(\widehat{AOC}+\widehat{ANC}=180^0\)
=>\(\widehat{ANC}=180^0-120^0=60^0\)(2)
Từ (1) và (2) suy ra ΔNAC đều
=>\(S_{NAC}=\dfrac{AC^2\cdot\sqrt{3}}{4}=\dfrac{\left(R\sqrt{3}\right)^2\cdot\sqrt{3}}{4}=\dfrac{R^2\cdot3\sqrt{3}}{4}\)