Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có
E là trung điểm của AC
M là trung điểm của BC
Do đó: EM là đường trung bình
=>EM//AB và EM=AB/2
=>EM//AD và EM=AD
=>AEMD là hình bình hành
mà \(\widehat{EAD}=90^0\)
nên AEMD là hình chữ nhật
b: ta có: AEMD là hình chữ nhật
nên AM=ED
d: Xét ΔAMI có
AB là đường cao
AB là đường trung tuyến
Do đo: ΔAMI cân tại A
mà AB là đường cao
nên AB là phân giác của góc MAI(1)
Xét ΔAMK có
AE là đường cao
AE là đường trung tuyến
Do đó: ΔAMK cân tại A
mà AC là đường cao
nên AC là phân giác của góc MAK(2)
Từ (1) và (2) suy ra \(\widehat{KAI}=2\cdot90^0=180^0\)
=>K,A,I thẳng hàng
A B C D F E H P Q M 1 1 2
Ta có : AQ // CH ; AP // BH nên Tứ giác AQHP là hình bình hành nên AP = HQ
để C/m CA.AH = CB.AP hay CA.AH = CB.HQ
Ta có : \(\widehat{BHD}=90^o-\widehat{HBD}\); \(\widehat{BCA}=90^o-\widehat{HBD}\)
\(\Rightarrow\widehat{BHD}=\widehat{BCA}\)
Mà \(\widehat{BHD}=\widehat{AHQ}\)( đối đỉnh ) nên \(\widehat{AHQ}=\widehat{BCA}\)
Ta có :
\(\widehat{HAQ}=\widehat{HAC}+\widehat{A_2}=\widehat{HAC}+\widehat{C_1}=180^o-\widehat{AHC}=180^o-\left(90^o+\widehat{A_1}\right)=90^o-\widehat{A_1}\)
Mà \(\widehat{ABC}=90^o-\widehat{A_1}\)
\(\Rightarrow\widehat{ABC}=\widehat{HAQ}\)
Xét \(\Delta ABC\)và \(\Delta HQA\)có :
\(\widehat{ACB}=\widehat{AHQ}\)( cmt ) ; \(\widehat{ABC}=\widehat{HAQ}\)
\(\Rightarrow\Delta ABC\approx\Delta QAH\left(g.g\right)\)
\(\Rightarrow\frac{AC}{BC}=\frac{HQ}{AH}\)hay \(\frac{AC}{BC}=\frac{AP}{AH}\) \(\Rightarrow\)AC.AH = BC.AP
Máy tính vẽ hình không chuẩn lắm nên mk ko vẽ nhé
Xét \(\Delta BMI\) và \(\Delta CMH\) có :
\(BM=CM\left(gt\right)\)
\(\widehat{BMI}=\widehat{CMH}\left(đđ\right)\)
\(MI=MH\left(gt\right)\)
\(\rightarrow\Delta BMI=\Delta CMH\left(c-g-c\right)\)
\(\rightarrow\left\{{}\begin{matrix}BI=CH\\\widehat{B_1}=\widehat{C_1}\end{matrix}\right.\)
Mà \(\widehat{C_1}+\widehat{CBF}=90^O\)
\(\rightarrow\widehat{FBI}=90^Ohay\widehat{ABI}=90^O\)
b .\(\Delta FBC\) vuông tại F có \(FM\) là đường trung tuyến
\(\rightarrow FM=\frac{BC}{2}\)(1)
CM tương tự : \(EM=\frac{BC}{2}\)(2)
Từ (1) và (2) suy ra :
\(\rightarrow FM=EM\)
\(\rightarrow\) \(\Delta MFE\) cân tại M
\(\rightarrow\widehat{MFE}=\widehat{MEF}\)
Bài 3:
a: Xét ΔAIB và ΔCID có
IA=IC
góc AIB=góc CID
IB=ID
Do đó: ΔAIB=ΔCID
b: Xét tứ giác ABCD có
I là trung điểm chung của AC và BD
nên ABCD là hình bình hành
Suy ra: AD//BC va AD=BC
Bài 6:
a: Xét ΔADB và ΔAEC có
AD=AE
góc A chung
AB=AC
Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có
EB=DC
BC chung
EC=BD
Do đó: ΔEBC=ΔDCB
Suy ra: góc OBC=góc OCB
=>ΔOBC cân tại O
=>OB=OC
=>OE=OD
=>ΔOED cân tại O
c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC