ABC nhọn, đường tròn O bán kính BC cắt AC, AB tại D và E. Gọi giao điểm c...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 5 2017

Câu a) b) mình làm được rồi giúp mình câu c) d) thui nhanh nhanh chút nha mifnk sắp đi học rùi

2 tháng 6 2017

? khó quá bn ơi !

mk ko bít

ko bít ko bít ko bít

chuk may mắn

10 tháng 6 2018

A B C O D E H F M K I

a) Ta có: Đường tròn (O) đường kính BC và 2 điểm D;E nằm trên (O)

=> ^BEC=^BDC=900 => BD vuông AC; CE vuông AB

Mà BD gặp CE tại H => H là trực tâm \(\Delta\)ABC

=> AH vuông BC (tại F) hay AF vuông BC (đpcm).

b) Thấy: \(\Delta\)ADH vuông đỉnh D, M là trg điểm AH

=> \(\Delta\)DMA cân đỉnh M => ^MDA=^MAD (1).

Tương tự: \(\Delta\)DOC cân đỉnh O => ^ODC=^OCD (2).

(1) + (2) => ^MAD+^ODC = ^MDA+^ODC = ^MAD+^OCD

Mà 2 góc ^MAD; ^OCD phụ nhau (Do \(\Delta\)AFC vuông đỉnh F)

=> ^MDA+^ODC=900 => ^MDO=900 => MD vuông OD

Lập luận tương tự: ME vuông OE => Tứ giác MEOD có ^MEO=^MDO=900

=> MEOD là tứ giác nội tiếp đường tròn đường kính OM

Xét tứ giác MFOD: ^MFO=^MDO=900 => Tứ giác MFOD nội tiếp đường tròn đường kính MO.

Do đó: 5 điểm M;D;O;E;F cùng thuộc 1 đường tròn đường kính OM (đpcm).

c) Dễ c/m \(\Delta\)EBF ~ \(\Delta\)CDF (c.g.c) => ^EFB=^CFD

=> 90- ^EFB = 900 - ^CFD => ^EFA=^DFA hay ^EFM=^MFD

Xét tứ giác FEMD: Nội tiếp đường tròn => ^EFM=^KDM => ^MFD=^KDM

=> \(\Delta\)MKD ~ \(\Delta\)MDF (g.g) => \(\frac{MD}{MF}=\frac{MK}{MD}\Rightarrow MD^2=MK.MF\)(đpcm).

Gọi I là giao điểm BK và MC.

Dễ thấy: \(\Delta\)FEK ~ FMD (g.g) => \(\frac{FE}{FM}=\frac{FK}{FD}\Rightarrow FE.FD=FM.FK\)

Hoàn toàn c/m được: \(\Delta\)EFB ~ \(\Delta\)CFD (c.g.c) => \(\frac{FE}{FC}=\frac{BF}{FD}\Rightarrow FE.FD=BF.FC\)

Từ đó suy ra: \(FM.FK=BF.FC\)\(\Rightarrow\frac{BF}{FM}=\frac{FK}{FC}\)

\(\Rightarrow\Delta\)BFK ~ \(\Delta\)MFC (c.g.c) => ^FBK=^FMC . Mà ^FMC+^FCM=900

=> ^FBK+^FCM = 900 hay ^FBI+^FCI=900 => \(\Delta\)BIC vuông đỉnh I

=> BK vuông với MC tại điểm I.

Xét \(\Delta\)MBC: BK vuông MC (cmt); MK vuông BC (tại F) => K là trực tâm \(\Delta\)MBC (đpcm).

d) Thấy ngay: EH là phân giác trong của \(\Delta\)FEK. Mà EA vuông EH

=> EA là phân giác ngoài tại đỉnh E của \(\Delta\)FEK

Theo ĐL đường phân giác trg tam giác: \(\frac{KH}{FH}=\frac{AK}{AF}\)

\(\Leftrightarrow1+\frac{KH}{FH}=1+\frac{AK}{AF}\Rightarrow\frac{FK}{FH}=\frac{AK+AF}{AF}\Leftrightarrow\frac{FK}{FH}=\frac{FK+2AK}{AF}\)

\(\Leftrightarrow\frac{FK}{FH}=\frac{FK}{AF}+\frac{2AK}{AF}\Leftrightarrow\frac{FK}{AF}=\frac{FK}{FH}-\frac{2AK}{AF}\)

\(\Leftrightarrow\frac{FK}{AF}+\frac{FK}{FH}=\frac{2FK}{FH}-\frac{2AK}{AF}=2+\frac{2KH}{FH}-2+\frac{2KF}{AF}=\frac{2KH}{FH}+\frac{2KF}{AF}\)

\(\Rightarrow FK\left(\frac{1}{AF}+\frac{1}{FH}\right)=\frac{2KH}{FH}+\frac{2KF}{AF}\)

Đến đây, lại thay: \(\frac{KH}{FH}=\frac{AK}{AF}\)(T/c đg phân giác)

\(\Rightarrow FK\left(\frac{1}{AF}+\frac{1}{FH}\right)=\frac{2\left(AK+KF\right)}{AF}=\frac{2AF}{AF}=2\)

\(\Leftrightarrow\frac{1}{AF}+\frac{1}{FH}=\frac{2}{FK}.\)(đpcm). 

22 tháng 4 2020

d.

Xét△FBH và △FAC có BFH=AFC=90*,FBH=FAC(cùng phụ BCD)

=>△FBH∼ △FAC(g.g) =>FH.FA=FB.FC .

Xét△FBK và △FMC có BFK=MFC=90*, FBK=FMC

=>△FBK ∼ △FMC(g.g)=>FK.FM=FB.FC .

=>FH.FA=FK.FM

Mà FH+FA=FM-MH+FM+MA=2FM

Ta có 2FH.FA=2FK.FM=>2FH.FA=FK(FH+FA)=>KL

29 tháng 12 2017

ABCOMNHE

a) Do M, N thuộc đường tròn đường kính BC nên \(\widehat{BMC}=\widehat{BNC}=90^o\Rightarrow BN\perp AC;CM\perp AB\)

Xét tam giác ABC có BN và CM là hai đường cao nên H là trực tâm, vậy thì AH cũng là đường cao của tam giác hay \(AH\perp BC\)

b) Do AMH và ANH là các tam giác vuông có chung cạnh huyền AH nên AMHN là tứ giác nội tiếp đường tròng tâm E, bán kính EH. Vậy thì \(\widehat{MHE}=\widehat{MNA}\) (Hai góc nội tiếp cùng chắn cung AM)

Lại có EM = EH nên \(\widehat{MHE}=\widehat{HME}\)

Vậy nên \(\widehat{HME}=\widehat{MNA}\)   (1)

Lại có do OM = OC nên \(\widehat{OMC}=\widehat{OCM}\) mà \(\widehat{OCM}=\widehat{BNM}\)  (Hai góc nội tiếp cùng chắn cung BM)

Vậy nên \(\widehat{OMC}=\widehat{BNM}\)     (2)

Từ (1) và (2) suy ra \(\widehat{HME}+\widehat{OMC}=\widehat{MNA}+\widehat{MNB}\Rightarrow\widehat{EMO}=\widehat{ANH}=90^o\)

Vậy ME là tiếp tuyến của đường tròn (O)

Xét tam giác MEO và NEO có: Cạnh EO chung, EM = EN, OM = ON 

\(\Rightarrow\Delta MEO=\Delta NEO\left(c-g-c\right)\)

\(\Rightarrow S_{MEO}=S_{NEO}\Rightarrow S_{MEO}=\frac{1}{2}S_{MENO}\)

\(\Rightarrow\frac{1}{2}ME.MO=\frac{1}{4}.MN.EO\Rightarrow MN.OE=2ME.MO\)

c) Do tứ giác AMHN nội tiếp nên \(\widehat{MAH}=\widehat{MNH}\)

Mà \(\widehat{MCB}=\widehat{MNH}\Rightarrow\widehat{MAH}=\widehat{MCB}\)

Vậy thì \(\Delta AMH\sim\Delta CMB\left(g-g\right)\Rightarrow\frac{CM}{AM}=\frac{CB}{AH}=1\)

Lại có xét tam giác vuông AMC, \(tan\widehat{BAC}=\frac{MC}{AM}=1.\)

1. Cho \(\widehat{xOy}=90^0\). Lấy \(I\in Ox,K\in Oy\). Vẽ (I ; OK) cắt tia đối của IO tại M .Vẽ (K ; OI) cắt tia đối của KO tại N. (I) và (K) cắt nhau tại A và B. Tiếp tuyến tại M của (I) và tiếp tuyến tại N của (K) cắt nhau tại C. Chứng minh A,B,C thẳng hàng2. Cho \(\Delta ABC\) nhọn, đường cao BD và CE cắt nhau tại H. Gọi I là trung điểm BC. Chứng minh ID, IE là tiếp tuyến của đường tròn ngoại...
Đọc tiếp

1. Cho \(\widehat{xOy}=90^0\). Lấy \(I\in Ox,K\in Oy\). Vẽ (I ; OK) cắt tia đối của IO tại M .Vẽ (K ; OI) cắt tia đối của KO tại N. (I) và (K) cắt nhau tại A và B. Tiếp tuyến tại M của (I) và tiếp tuyến tại N của (K) cắt nhau tại C. Chứng minh A,B,C thẳng hàng

2. Cho \(\Delta ABC\) nhọn, đường cao BD và CE cắt nhau tại H. Gọi I là trung điểm BC. Chứng minh ID, IE là tiếp tuyến của đường tròn ngoại tiếp \(\Delta ADE\)

3. Cho \(\Delta ABC\) vuông ở A nội tiếp (O) đường kính 5cm . Tiếp tuyến với đường tròn tại C cắt phân giác \(\widehat{ABC}\)tại K . BK cắt AC tại D và BD = 4cm . Tính độ dài BK .  

4. Cho (O ; R).Từ một điểm M ở ngoài (O), kẻ 2 tiếp tuyến MA,MB với (O) (A, B là các tiếp điểm). Qua A kẻ đường thẳng song song với MO cắt (O) tại E, ME cắt (O) tại F. MO cắt AF, AB lần lượt tại N, H. Chứng minh MN = NH

5. Cho \(\Delta ABC\)nhọn (AB < AC) nội tiếp đường tròn (O). Kẻ \(BD\perp AO\)(D nằm giữa A và O). Gọi M là trung điểm BC. AC cắt BD, MD lần lượt tại N, F. BD cắt (O) tại E. BF cắt AD tại H. Chứng minh DF // CE

0
2 tháng 1 2018

J A B C O E D H K M N

a) Xét hai tam giác ABD và ACE có:

\(\widehat{A}\) chung

\(\widehat{ADB}=\widehat{AEC}=90^o\)

\(\Rightarrow\Delta ABD\sim\Delta ACE\left(g-g\right)\)

\(\Rightarrow\frac{AB}{AC}=\frac{AD}{AE}\Rightarrow AD.AC=AE.AB\)

b) Xét tam giác ABC có BD và CE là hai đường cao nên H là trực tâm. Vậy thì AH vuông góc với BC tại K.

c) Ta thấy AMO; AKO; ANO là các tam giác vuông có chung cạnh huyền AO nên A, M, K, O, N cùng thuộc đường tròn đường kính AO.

Khi đó \(\widehat{AKN}=\widehat{AMN}\)  (Hai góc nội tiếp cùng chắn cung AN)

Lại có AM = AN nên \(\widehat{AMN}=\widehat{ANM}\)

Suy ra \(\widehat{AKN}=\widehat{ANM}\)

d) Gọi J là giao điểm của MN với AO.

Xét tam giác vuông ANO, đường cao NJ, ta có:

\(AJ.AO=AN^2\)  (Hệ thức lượng)

Lại có \(\Delta AHJ\sim\Delta AOK\left(g-g\right)\Rightarrow\frac{AH}{AO}=\frac{AJ}{AK}\)

\(\Rightarrow AJ.AO=AH.AK\)

\(\Rightarrow AN^2=AH.AK\)

\(\Rightarrow\Delta AHN\sim\Delta ANK\left(c-g-c\right)\Rightarrow\widehat{ANH}=\widehat{AKN}\)

Mà \(\widehat{AKN}=\widehat{ANM}\Rightarrow\widehat{ANH}=\widehat{ANM}\) hay M, N, H thẳng hàng.

3 tháng 12 2019

Hoàng Thị Thu Huyền ơi ngộ nhận kìa. ý d đang chứng minh thẳng hàng mà bạn có 2 cái tam giác AHJ và AOK đồng dạng  (g g) thì sao được ??