K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAHB vuông tại H có HD là đường cao

nên \(AD\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HE là đường cao

nên \(AE\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)

b: Xét ΔAHB vuông tại H có HD là đường cao

nên \(\left\{{}\begin{matrix}AH^2=AD\cdot AB\\HB^2=BD\cdot AB\end{matrix}\right.\Leftrightarrow\dfrac{AD}{BD}=\dfrac{AH^2}{HB^2}\)

20 tháng 11 2016

Ôn tập toán 9

20 tháng 11 2016

Ôn tập toán 9

Bài 1: 

a: \(P=\dfrac{1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\cdot\dfrac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}-1}=\dfrac{-\sqrt{x}-1}{\sqrt{x}}\)

b: Để \(P=\dfrac{-3}{2}\) thì \(\dfrac{\sqrt{x}+1}{\sqrt{x}}=\dfrac{3}{2}\)

\(\Leftrightarrow3\sqrt{x}=2\sqrt{x}+2\)

hay x=4

Bài 2: 

a: Xét ΔAHB vuông tại H có HD là đường cao

nên \(AD\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HE là đường cao

nên \(AE\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)

b: \(\dfrac{BC}{\cot B+\cot C}=BC:\left(\dfrac{BH}{AH}+\dfrac{CH}{AH}\right)=AH\)(đpcm)