K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2016

 -Ta có: a3-a= a.(a-1).(a+1) (với a thuộc Z). Mà a.(a-1).(a+1) là tích của 3 số nguyên liên tiếp nên a.(a-1).(a+1) chia hết cho 3.

 => a3-a chia hết cho 3.

-Chứng minh tương tự ta có b^3-b chia hết cho 3 và c^3-c chia hết cho 3 với mọi b,c thuộc Z.

=> a3+b3+c-(a+b+c) luôn chia hết cho 3 với mọi a,b,c thuộc Z.

=> nếu  a3+b3+cchia hết cho 3 thì a+b+c chia hết cho 3 và điều ngược lại cũng đúng.

 

Vậy đpcm.

15 tháng 8 2016

tkg Hạo nhìn qua là biết copy,ko nhìn đề ak?

13 tháng 8 2019

Câu hỏi của trần thị bảo trân - Toán lớp 8 - Học toán với OnlineMath

Câu hỏi trên là c/m \(a^3+b^3+c^3=3abc\)

Vậy thì suy ra được \(a^3+b^3+c^3⋮3abc\)

Mấy câu còn lại tương tự

13 tháng 1 2019

n thuộc N

a) TH1: n chia hết cho 3 => n.(n2+1).(n2+2) chia chết cho 3

TH2: n chia 3 dư 1 => n=3k+1=> n2+2 =(3k+1)2+2=9k2+6k+3 chia hết cho 3

TH3: n chia 3 dư 2 => n=3k+2 => n2+2=(3k+2)2+2=9k2+12k+6 chia hết cho 3

=> đpcm

27 tháng 10 2019

Ta có:

\(a^3+b^3+c^3\\ =\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)+3abc\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2+2ab+2bc+2ca-3ab-3bc-3ca\right)+3abc\)\(=\left(a+b+c\right)\left[\left(a+b+c\right)^2-3\left(ab+bc+ca\right)\right]+3abc\)

\(a+b+c⋮3\Rightarrow\)\(\left(a+b+c\right)\left[\left(a+b+c\right)^2-3\left(ab+bc+ca\right)\right]⋮3\) (1)

\(3abc⋮3\) (2)

Từ (1) và (2) \(\Rightarrow\text{​​}\text{​​}\)\(\left(a+b+c\right)\left[\left(a+b+c\right)^2-3\left(ab+bc+ca\right)\right]+3abc⋮3\)

Hay \(a^3+b^3+c^3⋮3\) (ĐPCM)

5 tháng 8 2018

1) \(n^3+11n=n^3-n+12n=n\left(n^2-1\right)+12n=\left(n-1\right)n\left(n+1\right)+12n\)

\(\left(n-1\right)n\left(n+1\right)⋮6;12n⋮6\)

\(\Rightarrow n^3+11n⋮6\)

2)\(n^3-19n=n^3-n-18n=\left(n-1\right)n\left(n+1\right)-18n\)

\(Có\left(n-1\right)n\left(n+1\right)⋮6;18n⋮6\)

\(\Rightarrow n^3-19n⋮6\)

15 tháng 9 2019

1)Ta có: n^3 + 11n

= n^3 +n^2 -n^2 -n+12n

= n^2(n+1) -n(n+1) +12n

= (n+1)(n^2-n) +12n

= (n+1)n(n-1) +12n

Vì (n+1)n(n-1) là 3 số tự nhiên liên tiếp nên

(n+1)n(n-1) chia hết cho 6

12n chia hết cho 6 với mọi n

=> n^3 + 11n chia hết cho 6 với mọi n