∈N* sao cho ab\a2+b2-a CMR: a là số chín...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2019

#)Giải :

Đặt \(A=a^2+b^2+c^2\)

Do tích a.b chẵn nên ta xét các trường hợp :

TH1 : Trong a và b có 1 số chẵn và 1 số lẻ 

Giả sử a là số chẵn, còn b là số lẻ 2

=> a2 chia hết cho 4; b2 chia 4 dư 1 => a2 + b2 chia 4 dư 1

=> a2 + b2 = 4m + 1 (m thuộc N)

Chon c = 2m => a2 + b+ c2 = 4m2 + 4m + 1 = (2m + 1)(thỏa mãn) (1)

TH2 : Cả a,b cùng chẵn 

=> a2 + b2 chia hết cho 4 => a2 + b2 = 4n (n thuộc N)

Chọn c = n - 1 => a2 + b2 + c2 = n2 + 2n + 1 = (n + 1)2 (thỏa mãn) (2)

Từ (1) và (2) => Luôn tìm được số nguyên c thỏa mãn đề bài 

Do a, b là số chẵn nên ta xét 2 trường hợp:

TH1a chẵn, b lẻ => a2 + b2 = 4m + 1, khi đó chọn c có dạng 2m ta luôn có a2 + b2 + c2 = 4m+ 4m + 1 = (2m + 1)2 (ĐPCM)

TH2 : a, b chẵn => a2 + b2 = 4n, khi đó chọn c có dạng n-1 ta luôn có a2 + b2 + c2 = n2 + 2n + 1 = (n+1)2 (ĐPCM)