Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có \(\hept{\begin{cases}a⋮m\\b⋮m\end{cases}}\Rightarrow a+b⋮m\)
Lại có \(\hept{\begin{cases}a+b+c⋮m\\a+b⋮m\end{cases}}\Rightarrow\left(a+b+c\right)-\left(a+b\right)⋮m\Rightarrow c⋮m\left(\text{đpcm}\right)\)
1
a,Ta có: \(\frac{a^2+b^2}{a^2+c^2}=\frac{bc+b^2}{bc+c^2}=\frac{b\left(c+b\right)}{c\left(c+b\right)}=\frac{b}{c}\)
b, \(\frac{a+b}{a-b}=\frac{c+a}{c-a}\Rightarrow\frac{a+b}{c+a}=\frac{a-b}{c-a}=\frac{\left(a+b\right)+\left(a-b\right)}{\left(c+a\right)+\left(c-a\right)}=\frac{2a}{2c}=\frac{a}{c}\)(1)
Mặt khác: \(\frac{a+b}{c+a}=\frac{a-b}{c-a}=\frac{\left(a+b\right)-\left(a-b\right)}{\left(c+a\right)-\left(c-a\right)}=\frac{2b}{2a}=\frac{b}{a}\)(2)
Từ (1);(2)\(\Rightarrow\frac{a}{c}=\frac{b}{a}\Leftrightarrow a^2=bc\)
c, Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{a}{b}=\frac{c}{d}=\frac{m}{n}=\frac{a+c+m}{b+d+n}\)
Ta có : \(a^2=bc\)
\(\Rightarrow\frac{a^2+b^2}{a^2+c^2}=\frac{bc+b^2}{bc+c^2}=\frac{b\left(b+c\right)}{c\left(b+c\right)}=\frac{b}{c}\)(đpcm)
a) Vì a > b
=> a.n > b.n
=> a.n + a.b > b.n + a.b
=> a.(b + n) > b.(a + n)
=> a/b > a+n/b+n ( đpcm)
Câu b và c lm tương tự
a) Nhân cả hai vế với b, ta có đpcm
b) Đề sai
c) Nhân cả hai vế với b, ta có đpcm
d) Bạn trên đã làm r , mình k trình bày lại nữa
d,
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow\) \(a=k\times b\) ; \(c=k\times d\)
Ta có :
\(\frac{a^2}{b^2}=\frac{\left(k\times b\right)^2}{b^2}=\frac{k^2\times b^2}{b^2}=k^2\) (1)
\(\frac{c^2}{d^2}=\frac{\left(k\times d\right)^2}{d^2}=\frac{k^2\times d^2}{d^2}=k^2\) (2)
\(\frac{a^2+c^2}{b^2+d^2}=\frac{\left(k\times b\right)^2+\left(k\times d\right)^2}{b^2+d^2}=\frac{k^2\times b^2+k^2\times d^2}{b^2+d^2}=\frac{k^2\times\left(b^2+d^2\right)}{b^2+d^2}=k^2\) (3)
Từ (1) ; (2) và (3) => \(\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}\)
1.a.ta có:\(\frac{2017+2018}{2018+2019}=\frac{2017}{2018+2019}+\frac{2018}{2018+2019}\)
mà \(\frac{2017}{2018}>\frac{2017}{2018+2019};\frac{2018}{2019}>\frac{2018}{2018+2019}\)
\(\Rightarrow M>N\)
b.ta thấy:
\(\frac{n+1}{n+2}>\frac{n+1}{n+3}>\frac{n}{n+3}\Rightarrow\frac{n+1}{n+2}>\frac{n}{n+3}\)
=> A>B
a) Ta có: \(\dfrac{36}{45}=\dfrac{4}{5}\)
BCNN (4;5)=20
Mà BCNN (a;b)=300
\(\Rightarrow\)300:20=15
\(\Rightarrow\)\(\dfrac{a}{b}=\dfrac{4\cdot15}{5\cdot15}=\dfrac{60}{75}\)
Vậy phân số \(\dfrac{a}{b}\) cần tìm là \(\dfrac{60}{75}\).
b) Ta có: \(\dfrac{a}{b}=\dfrac{21}{35}=\dfrac{3}{5}\)
ƯCLN (a;b)=30
\(\Rightarrow\)\(\dfrac{a}{b}=\dfrac{3\cdot30}{5\cdot30}=\dfrac{90}{15}\)
Vậy phân số \(\dfrac{a}{b}\) cần tìm là \(\dfrac{90}{15}\).
a) Ta có: \(\frac{a}{b}+\frac{a}{c}=\frac{ac+ab}{bc}=\frac{a\left(b+c\right)}{bc}=\frac{a.a}{bc}\) (thay b+c = a) (1)
\(\frac{a}{b}\times\frac{a}{c}=\frac{a.a}{bc}\) (2)
Từ (1) và (2) suy ra: \(\frac{a}{b}+\frac{a}{c}=\frac{a}{b}\times\frac{a}{c}\) (đpcm)
b) \(c=a+b\)\(\Rightarrow\)\(a=c-b\)
Ta có: \(\frac{a}{b}-\frac{a}{c}=\frac{ac-ab}{bc}=\frac{a\left(c-b\right)}{bc}=\frac{a^2}{bc}\) (thay c-b = a) (3)
\(\frac{a}{b}\times\frac{a}{c}=\frac{a^2}{bc}\) (4)
Từ (3) và (4) suy ra: \(\frac{a}{b}-\frac{a}{c}=\frac{a}{b}\times\frac{a}{c}\) (đpcm)