Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a bạn sửa lại để đi mình giải cho .
Sao lại chứng minh ABCD là hình bình hành
Hình bạn tự vẽ chắc dc rùi nhé mình chỉ giải thôi
Bài làm
a/ \(\Delta\)ABC cân tại A có AM là đường trung tuyến ứng với cạnh BC ( M là trung điểm BC )
Nên Am cũng là đường cao \(\Rightarrow\)AM \(⊥\)BC
vì M là trung điểm của BC \(\Rightarrow\)BM= MC = \(\frac{1}{2}BC=\frac{1}{2}.6=3cm\)
Xét tam giác AMB vuông tại M có:
AM2 + BM2 = AB2
AM2 + 32 = 52
AM2 + 9 = 25
AM2 = 25 - 9 =16
\(\Rightarrow\)AM= \(\sqrt{16}=4\)
Vậy S ABC = \(\frac{1}{2}AM.BC\)= \(\frac{1}{2}4.6=12\)
b/ Xét tứ giác AMCN có :
OA=OC (gt)
OM=ON ( N đối xứng với M qua O )
\(\Rightarrow\)Tứ giác AMCN là hình bình hành
Mà AM \(⊥\)MC ( chứng minh ở câu a ) \(\Rightarrow\)\(\widehat{AMC}\)= 90 0
Hình bình hành AMCN có \(\widehat{AMC}=90\)nên AMCN là hình chữ nhật
C/ Để AMNC là hình vuông thì AM phải bằng MC ( Vì theo lý thuyết hcn có 2 cạnh kề bằng nhau là hình vuông )
Nếu tam giác ABC vuông cân tại A thì có :
AM là đường trung tuyến ứng với cạnh huyền BC nên BM = AM = MC
Vậy để tứ giác AMCN là hình vuông thì tam giác ABC phải là tam giác vuông cân tại A
Tham khảo
a, Xét ΔABC có
{M là trung điểm của BCF là trung điểm của AC{M là trung điểm của BCF là trung điểm của AC
⇒ MF là đường trung bình của ΔABC
⇒ ⎧⎨⎩MF // ABMF = 12AB{MF // ABMF = 12AB
Vì MF // AB ⇒ MF // AE
Vì E là trung điểm của AB
⇒ AE = EB = 1212
Như vậy ⎧⎪ ⎪⎨⎪ ⎪⎩MF = 12ABAE = 12AB{MF = 12ABAE = 12AB
⇒ MF = AE
Tứ giác AEMF có
{MF // AEMF = AE{MF // AEMF = AE
⇒ Tứ giác AEMF là hình bình hành (đpcm)
b, Vì D đối xứng với H qua F
⇒ F là trung điểm của DH
Tứ giác AHCD có
⎧⎪⎨⎪⎩Đường chéo AC, DHF là trung điểm của ACF là trung điểm của DH{Đường chéo AC, DHF là trung điểm của ACF là trung điểm của DH
⇒ Tứ giác AHCD là hình bình hành (1)
Vì AH ⊥ BC
⇒ ˆAHB=ˆAHC=900AHB^=AHC^=900 (2)
Từ (1), (2) ⇒ Tứ giác AHCD là hình chữ nhật (hình bình hành có một góc vuông)(đpcm)
c, Xét ΔABC có
{E là trung điểm của ABF là trung điểm của AC{E là trung điểm của ABF là trung điểm của AC
⇒ EF là đường trung bình của ΔABC
⇒ EF // BC
⇒ HM // EF
⇒ Tứ giác EHMF là hình thang (3)
Vì F là trung điểm của AC
⇒ HF là đường trung tuyến của ΔAHC
Vì ˆAHC=900AHC^=900
⇒ ΔAHC vuông tại H
Vì : {ΔAHC vuông tại HHF là đường trung tuyến của ΔAHC{ΔAHC vuông tại HHF là đường trung tuyến của ΔAHC
⇒ HF = 1212AC (Trong tam giác vuông, đường trung tuyến ứng với cạnh huyền thì bằng nửa cạnh ấy)
Xét ΔABC:
{M là trung điểm của BCE là trung điểm của AB{M là trung điểm của BCE là trung điểm của AB
⇒ ME là đường trung bình của ΔABC
⇒ ME = 1212AC
Như vậy ⎧⎪ ⎪⎨⎪ ⎪⎩HF = 12ACME = 12AC{HF = 12ACME = 12AC
⇒ HF = ME (4)
Từ (3), (4) ⇒ Tứ giác EHMF là hình thang cân (2 đường chéo bằng nhau HF = ME) (đpcm)
Bài làm:
a, hbh ABCD có: AB // CD và AB = CD
=> AM // DN và AM = DN
=> AMND là hbh mà AB = 2AD => 1/2AB = AD => AM = AD
=> AMND là hthoi
b, cmtt câu a ta có: MB // ND và MB = ND
=> MBND là hbh