Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nè bạn :)
Ta có : \(2ab+2ac\ge4a\sqrt{bc}\) (Cauchy_)
\(\Rightarrow a^2+2ab+2ac+4bc\ge a^2+4a\sqrt{bc}+4bc\)
\(\Rightarrow a^2+2ab+2ac+4bc\ge\left(a+2\sqrt{bc}\right)^2\)
\(\Rightarrow\sqrt{\left(a+2b\right)\left(a+2c\right)}\ge a+2\sqrt{bc}\)\(\left(1\right)\)
Tương tự : \(\sqrt{\left(b+2a\right)\left(b+2c\right)}\ge b+2\sqrt{ac}\)\(\left(2\right)\)
\(\sqrt{\left(c+2a\right)\left(c+2b\right)}\ge c+2\sqrt{ab}\)\(\left(3\right)\)
Từ \(\left(1\right);\left(2\right);\left(3\right)\)\(\Rightarrow\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2\ge3\)
\(\Rightarrow\sqrt{a}+\sqrt{b}+\sqrt{c}\ge\sqrt{3}\)
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)
Thay vào biểu thức M ta được M = \(\frac{\sqrt{3}}{3}\)
có cả mấy bất đẳng thức đó hả
bn viết công thức tổng quát ra cho mk vs
mk thanks
\(\sqrt{a^2+2ac+2ab+4bc}\) + \(\sqrt{b^2+2bc+2ab+4ac}\) + \(\sqrt{c^2+2bc+2ac+4ab}\) =3
Haizzz mọi người ra chưa?
b+c\(\ge\) \(2\sqrt{bc}\)
(a+2b)(a+2c) =\(a^2 +2ac+2ab+ 4bc= a^2+2a(b+c) +4bc\)
\(\ge\)\(a^2+4a.\sqrt{bc}+4bc=\left(a+2\sqrt{bc}\right)^2\)
\(=>\sqrt{\left(a+2b\right)\left(a+2c\right)}=a+2\sqrt{bc}\)
tương tự: \(\sqrt{\left(b+2a\right)\left(b+2c\right)}=b+2\sqrt{ac}\)
\(\sqrt{\left(c+2a\right)\left(c+2b\right)}=c+2\sqrt{ab}\)
\(=>\sqrt{\left(a+2b\right)\left(a+2c\right)}+\sqrt{\left(b+2a\right)\left(b+2c\right)}+\sqrt{\left(c+2b\right)\left(c+2a\right)}\ge a+b+c+2\sqrt{ab}+2\sqrt{bc}+2\sqrt{ac}=\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2=3\)
khi a=b=c ( a,b,c nguyên dương nên a+b+c>0)
=> \(3\sqrt{a}=\sqrt{3}=>\sqrt{a}=\sqrt{b}=\sqrt{c}=\dfrac{\sqrt{3}}{3}\)
Thay vào M=\(\dfrac{1}{3}\)
Áp dụng BĐT AM-GM ta có:
\(\sqrt{a\left(b+2c\right)}=\frac{\sqrt{3a\left(b+2c\right)}}{\sqrt{3}}\le\frac{\frac{3a+b+2c}{2}}{\sqrt{3}}=\frac{3a+b+2c}{2\sqrt{3}}\)
Tương tự ta cũng có:\(\sqrt{b\left(c+2a\right)}\le\frac{3b+c+2a}{2\sqrt{3}}\)
\(\sqrt{c\left(a+2b\right)}\le\frac{3c+a+2b}{2\sqrt{3}}\)
Cộng theo vế các BĐT lại ta được:
\(VT\le\frac{3a+b+2c}{2\sqrt{3}}+\frac{3b+c+2a}{2\sqrt{3}}+\frac{3c+a+2b}{2\sqrt{3}}=\frac{6a+6b+6c}{2\sqrt{3}}=\frac{6.4}{2\sqrt{3}}=4\sqrt{3}\)
a/ \(\sqrt[5]{2a+b}+\sqrt[5]{2b+c}+\sqrt[5]{2c+a}\)
\(=\frac{1}{\sqrt[5]{3^4}}\left(\sqrt[5]{3^4}.\sqrt[5]{2a+b}+\sqrt[5]{3^4}.\sqrt[5]{2b+c}+\sqrt[5]{3^4}.\sqrt[5]{2c+a}\right)\)
\(\le\frac{1}{\sqrt[5]{3^4}}\left(\frac{3+3+3+3+2a+b}{5}+\frac{3+3+3+3+2b+c}{5}+\frac{3+3+3+3+2c+a}{5}\right)\)
\(=\frac{1}{\sqrt[5]{3^4}}\left(\frac{36}{5}+\frac{3\left(a+b+c\right)}{5}\right)\)
\(=\frac{1}{\sqrt[5]{3^4}}.9=3\sqrt[5]{3}\)
Biểu thức b chắc ghi nhầm, 1 căn dấu trừ thì hợp lý
\(a^3=6+3a.\sqrt[3]{9-4.2}=3a+6\Rightarrow a^3-3a=6\)
\(b^3=34+3b.\sqrt{17^2-12^2.2}=3b+34\Rightarrow b^3-3b=34\)
\(\Rightarrow A=a^3-3a+b^3-3b=6+34=40\)
2/ \(\Leftrightarrow\left\{{}\begin{matrix}2y^2-x^2=1\\2x^3-y^3=1.\left(2y-x\right)\end{matrix}\right.\)
\(\Rightarrow2x^3-y^3=\left(2y^2-x^2\right)\left(2y-x\right)\)
\(\Leftrightarrow x^3+2x^2y+2xy^2-5y^3=0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+3xy+5y^2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=y\Rightarrow2x^2-x^2=1\Rightarrow...\\x^2+3xy+5y^2=0\left(1\right)\end{matrix}\right.\)
Xét (1): \(\Leftrightarrow\left(x+\frac{3y}{2}\right)^2+\frac{11y^2}{4}=0\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\) thay vào hệ ko thỏa mãn (loại)
\(\frac{1}{m}+\frac{1}{n}=\frac{1}{2}\Leftrightarrow2\left(m+n\right)=mn\)
\(\left\{{}\begin{matrix}\Delta_1=m^2-4n\\\Delta_2=n^2-4m\end{matrix}\right.\)
\(\Rightarrow P=\Delta_1+\Delta_2=m^2+m^2-4\left(m+n\right)\)
\(=m^2+n^2-2mn=\left(m-n\right)^2\ge0\)
\(\Rightarrow\) Luôn có ít nhất 1 trong 2 giá trị \(\Delta_1\) hoặc \(\Delta_2\) không âm nên luôn có ít nhất 1 trong 2 pt trên có nghiệm \(\Rightarrow\) pt luôn luôn có nghiệm