Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3=ab+bc+ca\ge3\sqrt[3]{\left(abc\right)^2}\Rightarrow abc\le1\)
\(\dfrac{1}{1+a^2\left(b+c\right)}=\dfrac{1}{1+a\left(ab+ac\right)}=\dfrac{1}{1+a\left(3-bc\right)}=\dfrac{1}{1+3a-abc}=\dfrac{1}{3a+\left(1-abc\right)}\le\dfrac{1}{3a}\)
Tương tự và cộng lại:
\(VT\le\dfrac{1}{3a}+\dfrac{1}{3b}+\dfrac{1}{3c}=\dfrac{ab+bc+ca}{3abc}=\dfrac{3}{3abc}=\dfrac{1}{abc}\)
a) Gọi q là công sai của cấp số nhân. Ta có: \(a;b=aq;c=aq^2\).
\(a^2b^2c^2\left(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}\right)=\dfrac{b^2c^2}{a}+\dfrac{a^2c^2}{b}+\dfrac{a^2b^2}{c}\)
\(=\dfrac{\left(a.q\right)^2\left(a.q^2\right)^2}{a}+\dfrac{a^2\left(aq^2\right)^2}{aq}+\dfrac{a^2\left(aq\right)^2}{aq^2}\)
\(=\dfrac{a^2q^2a^2q^4}{a}+\dfrac{a^2a^2q^4}{aq}+\dfrac{a^2a^2q^2}{aq^2}\)
\(=a^3q^6+a^3q^3+a^3\)
\(=\left(a^2q\right)^3+\left(aq\right)^3+a^3\)
\(=c^3+b^3+a^3=a^3+b^3+c^3\).
b) Gọi q là công bội của của cấp số nhân.
Ta có: \(a;b=aq;c=aq^2;d=aq^3\).
\(\left(ab+bc+cd\right)^2=\left(a.aq+aq.aq^2+aq^2.aq^3\right)^2\)
\(=\left(a^2q+a^2q^3+a^2q^5\right)^2=a^4q^2\left(1+q^2+q^4\right)^2\). (1)
\(\left(a^2+b^2+c^2\right)\left(b^2+c^2+d^2\right)\)\(=\left(a^2+a^2q^2+a^2q^4\right)\left(a^2q^2+a^2q^4+a^2q^6\right)\)
\(=a^2\left(1+q^2+q^4\right)a^2q^2\left(1+q^2+q^4\right)\)
\(=a^4q^2\left(1+q^2+q^4\right)^2\). (2)
So sánh (1) và (2) ta có điều phải chứng minh.
Ta chứng minh BĐT sau cho các số dương:
\(x^5+y^5\ge xy\left(x^3+y^3\right)\)
\(\Leftrightarrow x^5-x^4y+y^5-xy^4\ge0\)
\(\Leftrightarrow\left(x^4-y^4\right)\left(x-y\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\left(x+y\right)\left(x^2+y^2\right)\ge0\) (đúng)
Áp dụng:
\(\dfrac{a^5+b^5}{ab\left(a+b\right)}\ge\dfrac{ab\left(a^3+b^3\right)}{ab\left(a+b\right)}=\dfrac{a^3+b^3}{a+b}=a^2-ab+b^2\)
Tương tự và cộng lại:
\(VT\ge2\left(a^2+b^2+c^2\right)-\left(ab+bc+ca\right)=2-\left(ab+ca+ca\right)\)
\(VT\ge4-\left(ab+bc+ca\right)-2=4\left(a^2+b^2+c^2\right)-\left(ab+bc+ca\right)-2\)
\(VT\ge4\left(ab+bc+ca\right)-\left(ab+bc+ca\right)-2=3\left(ab+bc+ca\right)-2\) (đpcm)
Áp dụng bđt Schwarz ta có:
\(P=\dfrac{a^4}{2ab+3ac}+\dfrac{b^4}{2cb+3ab}+\dfrac{c^4}{2ac+3bc}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{5\left(ab+bc+ca\right)}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{5\left(a^2+b^2+c^2\right)}=\dfrac{1}{5}\).
Đẳng thức xảy ra khi và chỉ khi \(a=b=c=\dfrac{\sqrt{3}}{3}\).
1: \(Q=\dfrac{ab\left(a-b\right)}{ab}\cdot\dfrac{\sqrt{a}+\sqrt{b}}{\sqrt{a}-\sqrt{b}}=\left(\sqrt{a}+\sqrt{b}\right)^2=a+2\sqrt{ab}+b\)
2: \(=\dfrac{-1+\sqrt{5}-\sqrt{5}+\sqrt{9}-...-\sqrt{2001}+\sqrt{2005}}{4}\)
\(=\dfrac{\sqrt{2005}-1}{4}\)
\(VT=\sqrt{\dfrac{a^2b^2}{c\left(a+b+c\right)+ab}}+\sqrt{\dfrac{b^2c^2}{a\left(a+b+c\right)+bc}}+\sqrt{\dfrac{a^2c^2}{b\left(a+b+c\right)+ac}}\\ VT=\sqrt{\dfrac{a^2b^2}{ac+ab+bc+c^2}}+\sqrt{\dfrac{b^2c^2}{a^2+ac+ab+bc}}+\sqrt{\dfrac{a^2c^2}{ab+bc+b^2+ac}}\\ VT=\sqrt{\dfrac{a^2b^2}{\left(c+a\right)\left(b+c\right)}}+\sqrt{\dfrac{a^2c^2}{\left(b+c\right)\left(a+b\right)}}+\sqrt{\dfrac{b^2c^2}{\left(a+b\right)\left(a+c\right)}}\)
Áp dụng BĐT Cauchy-Schwarz:
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{\dfrac{b^2c^2}{\left(a+b\right)\left(a+c\right)}}\le\dfrac{\dfrac{bc}{a+b}+\dfrac{bc}{a+c}}{2}\\\sqrt{\dfrac{a^2c^2}{\left(a+b\right)\left(b+c\right)}}\le\dfrac{\dfrac{ca}{a+b}+\dfrac{ca}{b+c}}{2}\\\sqrt{\dfrac{a^2b^2}{\left(b+c\right)\left(a+c\right)}}\le\dfrac{\dfrac{ab}{b+c}+\dfrac{ab}{a+c}}{2}\end{matrix}\right.\)
\(\Rightarrow VT\le\dfrac{\left(\dfrac{bc}{a+b}+\dfrac{ca}{a+b}\right)+\left(\dfrac{ca}{b+c}+\dfrac{ab}{b+c}\right)+\left(\dfrac{bc}{a+c}+\dfrac{ab}{a+c}\right)}{2}\\ \Rightarrow VT\le\dfrac{a+b+c}{2}=\dfrac{2}{2}=1\)
Dấu \("="\Leftrightarrow a=b=c=\dfrac{2}{3}\)
Mẫu số to quá nên ko nghĩ ra cách giải đẹp mắt:
Dự đoán dấu "=" xảy ra tại \(a=b=c=1\), ta cần c/m: \(A\le\dfrac{3}{16}\)
Do \(\sum\dfrac{a+1}{a^2+1+10a+20}\le\sum\dfrac{a+1}{2a+10a+20}=\sum\dfrac{a+1}{12a+20}\)
Nên ta chỉ cần chứng minh: \(\sum\dfrac{a+1}{3a+5}\le\dfrac{3}{4}\Leftrightarrow\sum\left(\dfrac{3a+3}{3a+5}-1\right)\le\dfrac{9}{4}-3\)
\(\Leftrightarrow\sum\dfrac{1}{3a+5}\ge\dfrac{3}{8}\Leftrightarrow\dfrac{3\left(ab+bc+ca\right)+10\left(a+b+c\right)+25}{\left(3a+5\right)\left(3b+5\right)\left(3c+5\right)}\ge\dfrac{1}{8}\) (quy đồng)
\(\Leftrightarrow\dfrac{4\left(a+b+c\right)+3\left(ab+bc+ca+2\left(a+b+c\right)\right)+25}{27abc+45\left(ab+bc+ca+2\left(a+b+c\right)\right)-15\left(a+b+c\right)+125}\ge\dfrac{1}{8}\)
\(\Leftrightarrow\dfrac{4\left(a+b+c\right)+52}{27abc-15\left(a+b+c\right)+530}\ge\dfrac{1}{8}\)
\(\Leftrightarrow47\left(a+b+c\right)\ge27abc+114\)
Điều này đúng do:
\(9=2\left(a+b+c\right)+ab+bc+ca\le2\left(a+b+c\right)+\dfrac{1}{3}\left(a+b+c\right)^2\)
\(\Rightarrow\left(a+b+c-3\right)\left(a+b+c+9\right)\ge0\)
\(\Rightarrow a+b+c\ge3\)
Và: \(9=a+b+c+a+b+c+ab+bc+ca\ge9\sqrt[9]{a^4b^4c^4}\)
\(\Rightarrow abc\le1\)
\(\Rightarrow\left\{{}\begin{matrix}47\left(a+b+c\right)\ge141\\27abc+114\le27+114=141\end{matrix}\right.\) (đpcm)