K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
5 tháng 11 2017
a) 9x2 - 36
=(3x)2-62
=(3x-6)(3x+6)
=4(x-3)(x+3)
b) 2x3y-4x2y2+2xy3
=2xy(x2-2xy+y2)
=2xy(x-y)2
c) ab - b2-a+b
=ab-a-b2+b
=(ab-a)-(b2-b)
=a(b-1)-b(b-1)
=(b-1)(a-b)
P/s đùng để ý đến câu trả lời của mình
NV
Nguyễn Việt Lâm
Giáo viên
16 tháng 7 2020
Bạn tham khảo:
Câu hỏi của Lê Đình Quân - Toán lớp 9 | Học trực tuyến
25 tháng 9 2017
1,
\(\frac{a}{1+\frac{b}{a}}+\frac{b}{1+\frac{c}{b}}+\frac{c}{1+\frac{a}{c}}=\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\ge\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}=\frac{2}{2}=1\left(Q.E.D\right)\)
Đặt \(\left\{{}\begin{matrix}b+c-a=x>0\\c+a-b=y>0\\a+b-c=z>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\frac{y+z}{2}\\b=\frac{z+x}{2}\\c=\frac{x+y}{2}\end{matrix}\right.\)
BĐT trở thành: \(\frac{\sqrt{y+z}}{\sqrt{2}x}+\frac{\sqrt{z+x}}{\sqrt{2}y}+\frac{\sqrt{x+y}}{\sqrt{2}z}\ge\frac{x+y+z}{\sqrt{\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{8}}}\)
\(\Leftrightarrow\frac{\sqrt{y+z}}{x}+\frac{\sqrt{z+x}}{y}+\frac{\sqrt{x+y}}{z}\ge\frac{4\left(x+y+z\right)}{\sqrt{\left(x+y\right)\left(y+z\right)\left(z+x\right)}}\)
\(\Leftrightarrow\frac{\left(y+z\right)\sqrt{\left(x+y\right)\left(x+z\right)}}{x}+\frac{\left(z+x\right)\sqrt{\left(y+z\right)\left(y+x\right)}}{y}+\frac{\left(x+y\right)\sqrt{\left(z+x\right)\left(z+y\right)}}{z}\ge4\left(x+y+z\right)\)
Ta có:
\(\frac{\left(y+z\right)\sqrt{\left(x+y\right)\left(x+z\right)}}{x}\ge\frac{\left(y+z\right)\left(x+\sqrt{yz}\right)}{x}=y+z+\frac{\left(y+z\right)\sqrt{yz}}{x}\ge y+z+\frac{2yz}{x}\)
Tương tự: \(\frac{\left(z+x\right)\sqrt{\left(y+z\right)\left(y+x\right)}}{y}\ge z+x+\frac{2zx}{y}\) ; \(\frac{\left(x+y\right)\sqrt{\left(z+x\right)\left(z+y\right)}}{z}\ge x+y+\frac{2xy}{z}\)
Cộng vế với vế:
\(VT\ge2\left(x+y+z\right)+2\left(\frac{yz}{x}+\frac{zx}{y}+\frac{xy}{z}\right)\ge2\left(x+y+z\right)+2\left(x+y+z\right)\)
Dấu "=" xảy ra khi \(x=y=z\) hay \(a=b=c\)