K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
12 tháng 2 2018
Áp dụng định lý PITAGO :
Ta có : \(c^2=a^2+b^2\)
Nhân cả 2 vế với n thì ta có :
\(\Rightarrow\)\(a^{2n}+b^{2n}=c^{2n}\)
Vậy \(a^{2n}+b^{2n}=c^{2n}\left(ĐPCM\right)\)
17 tháng 2 2020
a2 + b2 = c2
<=> (a2 + b2)n = c2n
<=> a2n + P + b2n = c2n
Mà P > 0 => a2n + b2n =< c2n
Dấu bằng xảy ra <=> n = 1 (làm đại ạ)
+) Với n = 1 thì \(a^2+b^2=c^2\)(đúng với định lý Pythagoras)
+) Với n = 2 thì \(a^4+b^4=\left(a^2+b^2\right)^2-2a^2b^2=c^4-2a^2b^2< c^4\)(đúng với n = 2)
Giả sử \(a^{2n}+b^{2n}\le c^{2n}\)
Ta sẽ chứng minh điều đó đúng với n + 1.
Ta có: \(a^{2n+2}+b^{2n+2}=\left(a^{2n}+b^{2n}\right)\left(a^2+b^2\right)-a^2.b^{2n}-a^{2n}.b^2\)
\(\le c^{2n}.c^2-a^2.b^{2n}-a^{2n}.b^2=c^{2n+2}-a^2.b^{2n}-a^{2n}.b^2< c^{2n+2}\)
Vậy BĐT đúng với n + 1
Vậy bđt đúng với mọi n > 0
Vậy \(a^{2n}+b^{2n}\le c^{2n}\)(đpcm)