\(b^2-4ac\)ko là SCP

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2020

Xét tổng: \(1^2+2^2+3^2+....+2018^2\)

Tổng trên có số số hạng lẻ là:

\(\frac{2017-1}{2}=1009\)(số)

Số số hạng chẵn là: \(\frac{2018-2}{2}+1=1008\)(số)

Một tổng gồm 1009 số lẻ và 1008 số chẵn

Do đó chia hết cho 2 nhưng không chia hết cho 4

=> Không là SCP (đpcm)

19 tháng 6 2016

Ta có : \(f\left(x\right)=ax^2+bx+c=a\left(x^2+\frac{bx}{a}\right)+c=a\left(x^2+2.x.\frac{b}{2a}+\frac{b^2}{4a^2}\right)-\frac{b^2}{4a}+c\)

\(=a\left(x+\frac{b}{2a}\right)^2-\frac{b^2-4ac}{4a}\ge-\frac{b^2-4ac}{4a}\)(vì a>0)

Dấu đẳng thức xảy ra \(\Leftrightarrow x=-\frac{b}{2a}\)

Do đó : Min f(x) = \(\frac{4ac-b^2}{4a}\Leftrightarrow x=-\frac{b}{2a}\)

b) \(f\left(x\right)=-ax^2+bx+c=-a\left(x^2-bx\right)+c=-a\left(x^2-2.x.\frac{b}{2a}+\frac{b^2}{4a^2}\right)-\frac{b^2}{4a}+c=-a\left(x-\frac{b}{2a}\right)^2+\frac{4ac-b^2}{4a}\le\frac{4ac-b^2}{4a}\)(vì a<0)

Dấu đẳng thức xảy ra \(\Leftrightarrow x=\frac{b}{2a}\)

Vậy Max f(x) = \(\frac{4ac-b^2}{4a}\Leftrightarrow x=\frac{b}{2a}\)

6 tháng 5 2021

c nhé bạn

14 tháng 10 2023

C.36m2

8 tháng 8 2020

anh có thể k cho em được ko em cần thêm k đúng

12 tháng 8 2020

Dễ thôi :D 

Đặt \(\frac{n\left(2n-1\right)}{26}=q^2\) Khi đó ta được:\(n\left(2n-1\right)=26q^2\)

Do VP chẵn nên n phải là số chẵn, đặt n = 2k ( k tự nhiên )

\(\Rightarrow k\left(4k-1\right)=13q^2\)

Mặt khác \(\left(k;4k-1\right)=1\Rightarrow\hept{\begin{cases}k=a^2\\4k-1=13b^2\end{cases}}\left(h\right)\hept{\begin{cases}k=13b^2\\4k-1=a^2\end{cases}}\) với a, b là các số tự nhiên

\(TH1:k=a^2;4k-1=13b^2\Rightarrow4k=13b^2+1=12b^2+b^2+1\)

Vì vậy \(b^2\equiv3\left(mod4\right)\) vô lý vì b2 phải là số chính phương.

\(TH2:k=13b^2;4k-1=a^2\Rightarrow4k=a^2+1\) tương tự thì không tồn tại.

Vậy không tồn tại n nguyên dương sao cho \(\frac{n\left(2n-1\right)}{26}\) là số chính phương

28 tháng 4 2021

Cần ý d :>