Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trên tia đối của tia MA lấy N sao cho NM = MA
Xét \(\Delta\)MAB và \(\Delta\)MNC có :
- MB = MC ( gt )
- Góc BMA = góc CMN ( đđ )
- MA = MN ( gt )
\(\Rightarrow\)\(\Delta\)MAB = \(\Delta\)MNC ( c - g - c )
\(\Rightarrow\)CN = AB ( hai cạnh tương ứng )
Mà AB < AC \(\Rightarrow\)CN < AC
\(\Rightarrow\)MÂC < góc ANC
Mà góc ANC = BÂM ( vì\(\Delta\)MAB = \(\Delta\)MNC )
\(\Rightarrow\)MÂB > MÂC ( đpcm )
A B C x D E y K M
HD : xét 2 góc DAC và góc BAE
^DAB+^BAC=^DAC
^CAE+^BAC=^BAE
^DAB=^CAE=90o
=> ^DAC=^BAE
sau đó cm \(\Delta DAC=\Delta BAE\)=> câu a
b) cm DKE =90o
2 câu c ; d dễ tự làm!
A B C M D H E
a) Xét \(\Delta\)BAM và \(\Delta\)CDM có:
MB=MC
^AMB=^DMC => \(\Delta\)BAM=\(\Delta\)CDM (c.g.c)
MA=MD
=> AB=DC (2 cạnh tương ứng). Mà AB<AC =>DC<AC => ^DAC<^ADC (Qhệ góc và cạnh đối diện)
^ADC=^BAM (2 góc tương ứng) => ^BAM>^CAM hay ^MAB>^MAC (đpcm)
b) AH \(⊥\)BC , AC>AB => HC>HB (Qhệ đường xiên hình chiếu)
E nằm giữa A và H => EH\(⊥\)BC, HC>HB => EC>EB.
A B C K K' H
Ta có: \(AC-AB>CK-BH\) (*)
\(\Leftrightarrow AC+BH>AB+CK\)
\(\Leftrightarrow\left(AC+BH\right)^2>\left(AB+CK\right)^2\)
\(\Leftrightarrow AC^2+BH^2+2.AC.BH>AB^2+CK^2+2.AB.CK\)
\(\Leftrightarrow AC^2+BH^2+4S_{ABC}>AB^2+CK^2+4S_{ABC}\)
\(\Leftrightarrow AC^2+BH^2>AB^2+CK^2\)
\(\Leftrightarrow AK>AH\) (**)
Xét tam giác ABC có \(\widehat{B}>\widehat{C}\Rightarrow AC>AB\)
Trên AC lấy điểm B' sao cho AB' = AB \(\Rightarrow AB'< AC\Rightarrow\) B' nằm giữa A và C. (1)
Kẻ B'K' vuông góc AB tại K'.Suy ra B'K' // KC (2)
Từ (1) và (2) suy ra K' nằm giữa A và K hay AK' < AK
Ta thấy ngay \(\Delta ABH=\Delta ACK'\) (Cạnh huyền - góc nhọn)
\(\Rightarrow AH=AK'\Rightarrow AK>AH\)
Vậy (**) đúng hay (*) đúng.
A B C K H
Ta có tam giác AKC vuông tại K
=> AC là cạnh lớn nhất (nhận xét quan hệ giữa cạnh đối diện với góc lớn hơn)
=>AC > CK
Ta có tam giác ABH vuông tại H
=> AB là cạnh lớn nhất (nhận xét quan hệ giữa cạnh đối diện với góc lớn hơn)
=> AB > BH
Có: AC>CK;
AB>BH (cmt)
=> AC-AB > CK-BH
a: TRên tia đối của tia MA, lấy K sao cho M là trung điểm của AK
Xét tứ giác ABKC có
M là trung điểm chung của AK và BC
=>ABKC là hình bình hành
=>AB//KC và AB=KC
=>góc BAM=góc CKA
mà góc BAM>góc MAC
nên góc CKA>góc CAK
=>CA>CK
=>CA>AB
b:
TRên tia đối của tia MA, lấy K sao cho M là trung điểm của AK
Xét tứ giác ABKC có
M là trung điểm chung của AK và BC
=>ABKC là hình bình hành
=>AB//KC và AB=KC
=>AC>KC
=>góc CKA>góc CAK
=>góc MAB>góc MAC