\(\frac{\left(a-b+c\right)\left(...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
12 tháng 8 2017

Lời giải:

Áp dụng BĐT AM-GM:

\(\left\{\begin{matrix} (a+b-c)(b+c-a)\leq \frac{(a+b-c+b+c-a)^2}{4}=b^2\\ (a+b-c)(c+a-b)\leq \frac{(a+b-c+c+a-b)^2}{4}=a^2\\ (b+c-a)(c+a-b)\leq \frac{(b+c-a+c+a-b)^2}{4}=c^2\end{matrix}\right.\)

Nhân theo vế và rút gọn, suy ra:

\((a+b-c)(b+c-a)(c+a-b)\leq abc\)

\(\Rightarrow F=\frac{(a+b-c)(b+c-a)(c+a-b)}{3abc}\leq \frac{abc}{3abc}=\frac{1}{3}\)

Vậy \(F_{\max}=\frac{1}{3}\Leftrightarrow a=b=c\)

12 tháng 8 2017

kết quả thì đúng rồi nhưng cho mình hỏi BĐT AM-GM là gì được không vậy

21 tháng 2 2019

:https://youtu.be/cs8x53kQFN4

21 tháng 2 2019

Đặt \(\hept{\begin{cases}a+b-c=x\\a+c-b=y\\b+c-a=z\end{cases}}\Leftrightarrow\hept{\begin{cases}a=\frac{x+y}{2}\\b=\frac{x+z}{2}\\c=\frac{y+z}{2}\end{cases}}\)

\(M=\frac{\left(a+b-c\right)\left(a+c-b\right)\left(b+c-a\right)}{3abc}\)

\(\Leftrightarrow M=\frac{xyz}{\frac{3\left(x+y\right)\left(y+z\right)\left(z+x\right)}{2.2.2}}=\frac{8xyz}{3.\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)

Áp dụng BĐT AM-GM ta có:

\(M\le\frac{8xyz}{3.2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}}=\frac{8xyz}{3.8xyz}=\frac{1}{3}\)

Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}x=y\\y=z\\z=x\end{cases}}\Leftrightarrow\hept{\begin{cases}a+b-c=a+c-b\\a+c-b=b+c-a\\a+b-c=b+c-a\end{cases}\Leftrightarrow\hept{\begin{cases}b=c\\a=b\\c=a\end{cases}}}\)

Vậy \(M_{max}=\frac{1}{3}\Leftrightarrow a=b=c\)

30 tháng 7 2015

\(P=\frac{\left(a-b-c\right)\left(a+b+c\right)\left(a+b-c\right)}{\left(a+b+c\right)\left(a-b-c\right)\left(a+b-c\right)}=1\)

19 tháng 3 2019

toán 8,9 khó chả ai trả lời cả khổ lắm!!!!!!

19 tháng 3 2019

Vì a,b,c là độ dài 3 cạnh tam giác nên

\(\hept{\begin{cases}a+b-c>0\\b+c-a>0\\c+a-b>0\end{cases}}\)

Ta có : \(\left(p-a\right)\left(p-b\right)\left(p-c\right)=\left(\frac{a+b+c}{2}-a\right)\left(\frac{a+b+c}{2}-b\right)\left(\frac{a+b+c}{2}-c\right)\)

         \(=\frac{b+c-a}{2}.\frac{a+c-b}{2}.\frac{a+b-c}{2}=\frac{\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)}{8}\)

         \(=\frac{\sqrt{\left(a+b-c\right)\left(b+c-a\right)}.\sqrt{\left(b+c-a\right)\left(c+a-b\right)}.\sqrt{\left(a+b-c\right)\left(c+a-b\right)}}{8}\)

          \(\le\frac{\frac{a+b-c+b+c-a}{2}.\frac{b+c-a+c+a-b}{2}.\frac{a+b-c+c+a-b}{2}}{8}\)

           \(=\frac{\frac{2b}{2}.\frac{2c}{2}.\frac{2a}{2}}{8}=\frac{abc}{8}\)

Dấu "=" <=> tam giác đó đều

2 tháng 9 2020

1 bài BĐT rất hay !!!!!!

BẠN PHÁ TOANG RA HẾT NHÁ SAU ĐÓ THÌ ĐƯỢC CÁI NÀY :33333

\(S=15\left(a^3+b^3+c^3\right)+6\left(a^2b+ab^2+b^2c+bc^2+a^2c+ac^2\right)-72abc\)

\(S=9\left(a^3+b^3+c^3\right)+6\left(a^3+b^3+c^3+a^2b+ab^2+b^2c+bc^2+c^2a+ca^2\right)-72abc\)

\(S=9\left(a^3+b^3+c^3\right)+6\left(a+b+c\right)\left(a^2+b^2+c^2\right)-72abc\)

TA ÁP DỤNG BĐT CAUCHY 3 SỐ SẼ ĐƯỢC:

\(\hept{\begin{cases}a+b+c\ge3\sqrt[3]{abc}\\a^2+b^2+c^2\ge3\sqrt[3]{a^2b^2c^2}\end{cases}}\)

=>    \(\left(a+b+c\right)\left(a^2+b^2+c^2\right)\ge9abc\)

=>    \(72abc\le8\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)

=>   \(-72abc\ge-8\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)

=>   \(S\ge9\left(a^3+b^3+c^3\right)+6\left(a+b+c\right)\left(a^2+b^2+c^2\right)-8\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)

=>   \(S\ge9\left(a^3+b^3+c^3\right)-2\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)

=>   \(S\ge9\left(a^3+b^3+c^3\right)-\frac{2}{9}\left(a+b+c\right)\)

TA LẠI TIẾP TỤC ÁP DỤNG BĐT SAU:   \(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\Rightarrow\left(a+b+c\right)^2\le\frac{1}{3}\Rightarrow a+b+c\le\sqrt{\frac{1}{3}}\)

=>   \(S\ge9\left(a^3+b^3+c^3\right)-\frac{2}{9}.\sqrt{\frac{1}{3}}\)

TA LẦN LƯỢT ÁP DỤNG BĐT CAUCHY 3 SỐ SẼ ĐƯỢC:

\(a^3+a^3+\left(\sqrt{\frac{1}{27}}\right)^3\ge3a^2.\sqrt{\frac{1}{27}}\)

ÁP DỤNG TƯƠNG TỰ VỚI 2 BIẾN b; c ta sẽ được 1 BĐT như sau: 

=>   \(2\left(a^3+b^3+c^3\right)+3\left(\sqrt{\frac{1}{27}}\right)^3\ge\frac{3}{\sqrt{27}}\left(a^2+b^2+c^2\right)=\frac{3}{\sqrt{27}}.\left(\frac{1}{9}\right)=\frac{\sqrt{3}}{27}\)

=>   \(a^3+b^3+c^3\ge\frac{\left(\frac{\sqrt{3}}{27}-3\left(\sqrt{\frac{1}{27}}\right)^3\right)}{2}\)

=>   \(S\ge\frac{9\left(\frac{\sqrt{3}}{27}-3\left(\sqrt{\frac{1}{27}}\right)^3\right)}{2}-\frac{2}{9}.\sqrt{\frac{1}{3}}\)

=>   \(S\ge\frac{1}{\sqrt{3}}\)

VẬY TA CÓ ĐPCM.

DẤU "=" XẢY RA <=>   \(a=b=c=\sqrt{\frac{1}{27}}\)

13 tháng 10 2016

đi ,nt ,mình giải cho

13 tháng 10 2016

nt là gì