Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mk còn thiếu vế trái nữa
a2 + b2 + c2 \(\le\)2 ( ab + bc + ca )
Vì a ; b ; c là 3 cạnh của 1 tam giác nên theo bất đẳng thức tam giác:
Ta có:
a\(\le\)b +c => a . a \(\le\)a.(b + c) => a2 \(\le\) ab + ac ( 1 )
b \(\le\) a + c => b . b \(\le\)b ( a + c ) => b2 \(\le\)ab + bc ( 2)
c \(\le\) a + b => c . c \(\le\) c . ( a + b ) => c2 \(\le\) ac + bc ( 3 )
Cộng với các vế ( 1 ) ; ( 2 ) ; ( 3 ) được:
a2+ b2 + c2 \(\le\) ab + ac + ab + bc + ac + bc
Vậy a2 + b2 + c2 \(\le\)2.( ab + bc + ca )
a2 + b2 + c2 \(\ge\) ab + bc + ca
<=> a2 + b2 + c2 - ab - bc - ca \(\ge\) 0
<=> 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ca \(\ge\)0
<=> ( a2 - 2ab + b2 ) + ( b2 - 2bc + c2 ) + ( c2 - 2ca + a2 ) \(\ge\)0
<=> ( a - b )2 + ( b - c)2 + ( c - a)2 \(\ge\) 0 ( Luôn đúng)
Dấu " = " xảy ra khi a = b = c
Ta có : \(ab+bc+ac\le a^2+b^2+c^2\Leftrightarrow2\left(ab+bc+ac\right)\le2\left(a^2+b^2+c^2\right)\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
Vì BĐT cuối luôn đúng nên ta có : \(a^2+b^2+c^2\ge ab+bc+ac\)
Theo Bất đẳng thức tam giác ta có :
\(a< b+c\Rightarrow a.a< a\left(b+c\right)\Leftrightarrow a^2< ab+ac\) (1)
\(b< a+c\Rightarrow b.b< b\left(a+c\right)\Leftrightarrow b^2< ab+bc\)(2)
\(c< a+b\Rightarrow c.c< c\left(a+b\right)\Leftrightarrow c^2< ac+bc\)(3)
Cộng (1) , (2) , (3) theo vế ta được : \(a^2+b^2+c^2< 2\left(ab+bc+ac\right)\)
Từ đó suy ra đpcm
Vì a,b,c là độ dài ba cạnh của một tam giác nên ta có :
\(\begin{cases}a+b>c\\c+a>b\\b+c>a\end{cases}\) \(\Leftrightarrow\begin{cases}ac+bc>c^2\\ab+bc>b^2\\ab+ac>a^2\end{cases}\) \(\Rightarrow a^2+b^2+c^2>2\left(ab+bc+ac\right)\)
1 ) (a+b+c)^2 >= 3(ab+bc+ac)
<=> a^2 + b^2 + c^2 >= ab + bc + ac
<=> 2a^2 + 2b^2 + 2c^2 >= 2ab + 2bc + 2ac
<=> a^2 - 2ab + b^2 + b^2 - 2bc + c^2 + a^2 - 2ac + c^2 >= 0
<=> (a - b)^2 + (b-c)^2 + (a-c)^2 >= 0
( luôn đúng với mọi a ; b ; c )
( đpcm )
2 ) P = \(\frac{\left(a+b+c\right)^2}{ab+bc+ac}+\frac{ab+bc+ac}{\left(a+b+c\right)^2}=\frac{\left(a+b+c\right)^2}{9\left(ab+bc+ac\right)}+\frac{ab+bc+ac}{\left(a+b+c\right)^2}+\frac{8\left(a+b+c\right)^2}{9\left(ab+bc+ac\right)}\)
AD BĐT Cô - si và BĐT phụ đã cmt ở trên ta có : \(P\ge2.\frac{1}{3}+\frac{8.3.\left(ab+bc+ac\right)}{9\left(ab+bc+ac\right)}=\frac{2}{3}+\frac{8}{3}=\frac{10}{3}\)
Dấu " = " xảy ra <=> a = b = c
Khôi Bùi : theo e ý 2 có thể đơn giản hóa vấn đề bằng cách đặt ẩn phụ
đặt \(\frac{\left(a+b+c\right)^2}{ab+bc+ca}=t\left(t\ge3\right)\)
\(\Rightarrow P=t+\frac{1}{t}=\frac{t}{9}+\frac{1}{t}+\frac{8}{9}t\)
Áp dụng BĐT AM-GM ta có:
\(P\ge2.\sqrt{\frac{t}{9}.\frac{1}{t}}+\frac{8}{9}t\ge\frac{2.1}{3}+\frac{8}{9}.3=\frac{10}{3}\)
Dấu " = " xảy ra <=> a=b
Áp dụng bất đẳng thức Bunyakovsky, ta được: \(\Sigma_{cyc}\frac{ab}{a^2+bc+ca}=\Sigma_{cyc}\frac{ab\left(b^2+bc+ca\right)}{\left(a^2+bc+ca\right)\left(b^2+bc+ca\right)}\le\Sigma_{cyc}\frac{ab\left(b^2+bc+ca\right)}{\left(ab+bc+ca\right)^2}\)
Ta có: \(\Sigma_{cyc}\frac{ab\left(b^2+bc+ca\right)}{\left(ab+bc+ca\right)^2}=\frac{ab^3+bc^3+ca^3+2a^2bc+2ab^2c+2abc^2}{\left(ab+bc+ca\right)^2}=\frac{ab^3+bc^3+ca^3+2.a\sqrt{ab}.c\sqrt{ab}+2.a\sqrt{bc}.b\sqrt{bc}+2.c\sqrt{ca}.b\sqrt{ca}}{\left(ab+bc+ca\right)^2}\le\frac{ab^3+bc^3+ca^3+a^3b+abc^2+a^2bc+b^3c+c^3a+ab^2c}{\left(ab+bc+ca\right)^2}=\frac{\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)}{\left(ab+bc+ca\right)^2}=\frac{a^2+b^2+c^2}{ab+bc+ca}\)
Đẳng thức xảy ra khi a = b = c
Áp dụng BĐT Bunhiacopxki:
\(\left(a^2+bc+ca\right)\left(b^2+bc+ca\right)\ge\left(ab+bc+ca\right)^2\)
\(\Rightarrow\frac{ab}{a^2+bc+ca}\le\frac{ab\left(b^2+bc+ca\right)}{\left(ab+bc+ca\right)^2}\)
Tương tự: \(\frac{bc}{b^2+ca+ab}\le\frac{bc\left(c^2+ca+ab\right)}{\left(ab+bc+ca\right)^2}\) ; \(\frac{ac}{c^2+ab+bc}\le\frac{ac\left(a^2+ab+bc\right)}{\left(ab+bc+ca\right)^2}\)
Cộng vế với vế:
\(VT\le\frac{ab^3+bc^3+ca^3+2a^2bc+2ab^2c+2abc^2}{\left(ab+bc+ca\right)^2}\)
\(VT\le\frac{ab^3+bc^3+ca^3+2.a\sqrt{ab}.c\sqrt{ab}+2a\sqrt{bc}.b\sqrt{bc}+2c\sqrt{ac}.b\sqrt{ac}}{\left(ab+bc+ca\right)^2}\)
\(VT\le\frac{ab^3+bc^3+ca^3+a^3b+abc^2+b^3c+a^2bc+ac^3+ab^2c}{\left(ab+bc+ca\right)}=\frac{\left(ab+bc+ca\right)\left(a^2+b^2+c^2\right)}{\left(ab+bc+ca\right)^2}\)
\(VT\le\frac{a^2+b^2+c^2}{ab+bc+ca}\)
Dấu "=" xảy ra khi \(a=b=c\)
non vãi loonf đến câu này còn đéo bt ko bt đi học để làm gì
đúng trẻ trâu