K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
AH
Akai Haruma
Giáo viên
12 tháng 7 2020
Đề lỗi. Bạn lưu ý gõ đề bằng công thức toán để được hỗ trợ tốt hơn.
Vì a,b,c là độ dài 3 cạnh của 1 tam giác nên ta có
a+b-c>0; b+c-a>0; b+c-a>0
áp dụng BĐT \(\frac{1}{x}\)+\(\frac{1}{y}\)\(\ge\)\(\frac{4}{x+y}\) ta có:
\(\frac{1}{a+b-c}\)+\(\frac{1}{b+c-a}\)=\(\ge\)\(\frac{4}{a+b-c+b+c-a}\)=\(\frac{4}{2b}\)=\(\frac{2}{b}\)(1)
\(\frac{1}{a+b-c}\)+\(\frac{1}{c+a-b}\)\(\ge\)\(\frac{4}{a+b-c+c+a-b}\)=\(\frac{4}{2a}\)=\(\frac{2}{a}\)(2)
\(\frac{1}{b+c-a}\)+\(\frac{1}{c+a-b}\)\(\ge\)\(\frac{4}{b+c-a+c+a-b}\)=\(\frac{4}{2c}\)=\(\frac{2}{c}\)(3)
cộng vế với vế của(1);(2) và (3) ta có:
\(\frac{2}{a+b-c}\)+\(\frac{2}{b+c-a}\)+\(\frac{2}{c+a-b}\)\(\ge\)\(\frac{2}{b}\)+\(\frac{2}{a}\)+\(\frac{2}{c}\)
<=>\(\frac{1}{a+b-c}\)+\(\frac{1}{b+c-a}\)+\(\frac{1}{c+a-b}\)\(\ge\)\(\frac{1}{a}\)+\(\frac{1}{b}\)+\(\frac{1}{c}\)
dấu = xảy ra khi a=b=c