\(|\frac{a-b}{a+b}+\frac{b-c}{b+c}+\frac{c-a}{c+a...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 5 2019

1. đặt b + c - a = x, a + c - b = y , a + b - c = z thì x,y,z > 0

theo bất đẳng thức ( x + y ) ( y + z ) ( x + z ) \(\ge\)8xyz ( tự chứng minh ) , ta có :

2a . 2b . 2c \(\ge\)8 ( b + c - a ) ( a + c - b ) ( a + b - c )

\(\Rightarrow\)abc \(\ge\)( b + c - a ) ( a + c - b ) ( a + b - c )

Dấu " = " xảy ra \(\Leftrightarrow\)a = b = c

27 tháng 5 2019

Ta có a + b > c, b + c > a, a + c > b

Xét \(\frac{1}{a+c}+\frac{1}{b+c}>\frac{1}{a+c+b}+\frac{1}{b+c+a}=\frac{2}{a+b+c}>\frac{2}{a+b+a+b}=\frac{1}{a+b}\)

tương tự : \(\frac{1}{a+b}+\frac{1}{a+c}>\frac{1}{b+c},\frac{1}{a+b}+\frac{1}{b+c}>\frac{1}{a+c}\)

vậy ...

8 tháng 4 2020

a) Gọi AD là tia phân giác của \(\widehat{BAC}\left(D\in BC\right)\)

Qua B vẽ đường thẳng song song với AD cắt AC tại M

Ta có: \(\widehat{ABM}=\widehat{BAD};\widehat{AMB}=\widehat{DAC}\)

Mà \(\widehat{BAD}=\widehat{DAC}\)(vì AD là phân giác \(\widehat{BAC}\))

=> \(\widehat{AMB}=\widehat{ABM}\) nên \(\Delta\)ABM cân tại A)

Từ đó có AM=AB=c. \(\Delta\)ABM có: MB<AM+AB=2c

\(\Delta\)ADC có: MB//AD, nên \(\frac{AD}{AB}=\frac{AC}{MC}\) (hệ quả định lý Ta-let)

do đó \(AD=\frac{AC}{MC}\cdot MB< \frac{AC}{AC+AM}\cdot2bc=\frac{2bc}{b+c}\)

b) Cmtt câu a) ta có: \(\hept{\begin{cases}y< \frac{2ca}{c+a}\\z< \frac{2ab}{a+b}\end{cases}}\)

Do đó: \(\hept{\begin{cases}\frac{1}{x}>\frac{1}{2}\left(\frac{1}{b}+\frac{1}{c}\right)\\\frac{1}{y}>\frac{1}{2}\left(\frac{1}{a}+\frac{1}{c}\right)\\\frac{1}{z}>\frac{1}{2}\left(\frac{1}{b}+\frac{1}{a}\right)\end{cases}\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}>\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}\)

16 tháng 2 2019

1, Áp dụng bất đẳng thức Cô-si cho 2 số dương ta được

\(\frac{bc}{a}+\frac{ab}{c}\ge2\sqrt{\frac{bc}{a}.\frac{ab}{c}}=2b\)

\(\frac{ac}{b}+\frac{ab}{c}\ge2\sqrt{\frac{ac}{b}.\frac{ab}{c}}=2a\)

\(\frac{ac}{b}+\frac{bc}{a}\ge2\sqrt{\frac{ac}{b}.\frac{bc}{a}}=2c\)
Cộng từng vế vào ta được 

\(2\left(\frac{bc}{a}+\frac{ac}{b}+\frac{ab}{c}\right)\ge2\left(a+b+c\right)\)

\(\Leftrightarrow\frac{bc}{a}+\frac{ac}{b}+\frac{ab}{c}\ge a+b+c\)
Dấu "=" khi a = b = c

16 tháng 2 2019

2,Vì a,b,c là 3 cạnh của tam giác nên a,b,c > 0 

Ta có các bđt quen thuộc sau : \(\frac{m}{n}>\frac{m}{m+n}\)và \(\frac{m}{n}< \frac{m+m}{m+n}\)

\(\Rightarrow\frac{m}{m+n}< \frac{m}{n}< \frac{m+m}{m+n}\). Áp dụng bđt này ta được 

\(\frac{a}{a+b+c}< \frac{a}{b+c}< \frac{a+a}{a+b+c}\)

\(\frac{b}{a+b+c}< \frac{b}{a+b+c}< \frac{b+b}{a+b+c}\)

\(\frac{c}{a+b+c}< \frac{c}{a+b}< \frac{c+c}{a+b+c}\)

Cộng 3 bđt trên lại ta được đpcm

17 tháng 4 2019

\(\hept{\begin{cases}b+c-a=x\\a+c-b=y\\a+b-c=z\end{cases}\Rightarrow}\hept{\begin{cases}a=\frac{z+y}{2}\\b=\frac{x+z}{2}\\c=\frac{y+x}{2}\end{cases}}\)

\(\Rightarrow\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}=\frac{y+z}{2x}+\frac{x+z}{2y}+\frac{y+x}{2z}=\frac{y}{2x}+\frac{z}{2x}+\frac{x}{2y}+\frac{z}{2y}+\frac{y}{2z}+\frac{x}{2z}\)Áp dụng BĐT AM-GM ta có:

\(\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}\ge2.\sqrt{\frac{y}{2x}.\frac{x}{2y}}+2.\sqrt{\frac{z}{2x}.\frac{x}{2z}}+2.\sqrt{\frac{y}{2z}.\frac{z}{2y}}=1+1+1=3\)

Dấu " = " xảy ra <=> a=b=c

17 tháng 4 2019

\(\frac{a}{b+c}>\frac{a}{a+b+c};\frac{b}{c+a}>\frac{b}{a+b+c};\frac{c}{a+b}>\frac{c}{a+b+c}\)

\(\Rightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)(1)

bạn tự c/m: \(\frac{a}{b}< \frac{a+c}{b+c}\left(b>a>0;c>0\right)\)

\(\Rightarrow\frac{a}{b+c}>\frac{2a}{a+b+c};\frac{b}{c+a}< \frac{2b}{a+b+c};\frac{c}{a+b}< \frac{2c}{a+b+c}\)

\(\Rightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}< \frac{2a}{a+b+c}+\frac{2b}{a+b+c}+\frac{2c}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)(2)

Từ (1) và (2) 

\(1< \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}< 2\)

đpcm

26 tháng 11 2020

Tự nhiên lục được cái này :'( 

3. Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{\left(1+1\right)^2}{a+b-c+b+c-a}=\frac{4}{2b}=\frac{2}{b}\)

\(\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{\left(1+1\right)^2}{b+c-a+c+a-b}=\frac{4}{2c}=\frac{2}{c}\)

\(\frac{1}{a+b-c}+\frac{1}{c+a-b}\ge\frac{\left(1+1\right)^2}{a+b-c+c+a-b}=\frac{4}{2a}=\frac{2}{a}\)

Cộng theo vế ta có điều phải chứng minh

Đẳng thức xảy ra <=> a = b = c