\(a+2b+3c\ge20\)

Tìm min 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2017

frac là gì vậy bạn?.....

12 tháng 7 2015

Áp dụng Côsi

\(S=\frac{3}{4}a+\frac{3}{a}+\frac{1}{2}b+\frac{9}{2b}+\frac{1}{4}c+\frac{4}{c}+\frac{1}{4}\left(a+2b+3c\right)\)

\(\ge2\sqrt{\frac{3a}{4}.\frac{3}{a}}+2\sqrt{\frac{b}{2}.\frac{9}{2b}}+2\sqrt{\frac{c}{4}.\frac{4}{c}}+\frac{1}{4}.20\)

\(=3+3+2+5=13\)

Dấu "=" xảy ra khi \(\frac{3a}{4}=\frac{3}{a};\text{ }\frac{b}{2}=\frac{9}{2b};\text{ }\frac{c}{4}=\frac{4}{c};\text{ }a+2b+3c=20\) hay \(a=2;\text{ }b=3;\text{ }c=4\)

14 tháng 3 2019

Web có hơn 600 nghìn câu hỏi mà toàn thấy câu hỏi giống nhau với câu thấy nhiều đến chảy hết nước mắt rồi

4 tháng 9 2016

Ta có 
 M = (3a/4+3/a) + ( c/4+4/c) + (b/2+9/2b) + a/4 + b/2 + 3c/4 >= 3 + 2 + 3 +(a+2b+3c)/4 >= 13
Dấu bằng xảy ra khi a=2,b=3,c=4

4 tháng 8 2018

Câu này đã có người đăng rồi, bạn tìm lại sẽ thấy

10 tháng 7 2017

\(\frac{1}{2a+3b+3c}=\frac{1}{\left(a+b\right)+\left(a+c\right)+2\left(b+c\right)}\)

Sử dụng bất đẳng thức COSI quen thuộc \(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\)

=>\(\frac{1}{2a+3b+3c}\le\frac{1}{4}\left(\frac{1}{a+b+a+c}+\frac{1}{2\left(b+c\right)}\right)\le\frac{1}{4}\left(\frac{1}{4}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)+\frac{1}{2\left(b+c\right)}\right)\)

\(=\frac{1}{16\left(a+b\right)}+\frac{1}{16\left(a+c\right)}+\frac{1}{8\left(b+c\right)}\)

Làm tương tự đối với 2 biểu thức kia ta dc P\(\le\frac{1}{4}\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)=\frac{2017}{4}\)

Dấu bằng xảy ra khi \(a=b=c=\frac{3}{4034}\)

17 tháng 8 2020

dùng Bất Đẳng Thức Cauchy chứng minh: với các số dương x;y;z;t 

\(\left(x+y+z+t\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}\right)\ge16\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}\le\frac{16}{x+y+z+t}\)

dấu "=" xảy ra khi x=y=z=t áp dụng vào bài toán ta có

\(\frac{1}{2a+3b+3c}=\frac{1}{16}\cdot\frac{16}{\left(a+b\right)+\left(a+c\right)+\left(b+c\right)+\left(b+c\right)}\le\frac{1}{16}\left(\frac{1}{a+b}+\frac{1}{a+c}+\frac{2}{b+c}\right)\)

từ đó tìm được maxP=502,25 dấu "=" xảy ra khi \(a=b=c=\frac{3}{4034}\)

29 tháng 5 2019

Dặt x=a, y=2b,z=3c

Khi đó

\(P=\frac{yz}{\sqrt{x+yz}}+\frac{xz}{\sqrt{y+xz}}+\frac{xy}{\sqrt{z+xy}}\)và x+y+z=1

Ta có \(\frac{yz}{\sqrt{x+yz}}=\frac{yz}{\sqrt{x\left(x+y+z\right)+yz}}=\frac{yz}{\sqrt{\left(x+y\right)\left(x+z\right)}}\le\frac{1}{2}yz\left(\frac{1}{x+y}+\frac{1}{x+z}\right)\)

=> \(P\le\frac{1}{2}\left(\frac{xz}{x+y}+\frac{yz}{x+y}\right)+\frac{1}{2}\left(\frac{xy}{y+z}+\frac{xz}{y+z}\right)+...=\frac{1}{2}\left(x+y+z\right)\)

                                                                                                                     \(=\frac{1}{2}\)

Vậy \(MaxP=\frac{1}{2}\)khi x=y=z=1/3 hay \(\hept{\begin{cases}a=\frac{1}{3}\\b=\frac{1}{6}\\c=\frac{1}{9}\end{cases}}\)