Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng Côsi
\(S=\frac{3}{4}a+\frac{3}{a}+\frac{1}{2}b+\frac{9}{2b}+\frac{1}{4}c+\frac{4}{c}+\frac{1}{4}\left(a+2b+3c\right)\)
\(\ge2\sqrt{\frac{3a}{4}.\frac{3}{a}}+2\sqrt{\frac{b}{2}.\frac{9}{2b}}+2\sqrt{\frac{c}{4}.\frac{4}{c}}+\frac{1}{4}.20\)
\(=3+3+2+5=13\)
Dấu "=" xảy ra khi \(\frac{3a}{4}=\frac{3}{a};\text{ }\frac{b}{2}=\frac{9}{2b};\text{ }\frac{c}{4}=\frac{4}{c};\text{ }a+2b+3c=20\) hay \(a=2;\text{ }b=3;\text{ }c=4\)
Web có hơn 600 nghìn câu hỏi mà toàn thấy câu hỏi giống nhau với câu thấy nhiều đến chảy hết nước mắt rồi
Ta có
M = (3a/4+3/a) + ( c/4+4/c) + (b/2+9/2b) + a/4 + b/2 + 3c/4 >= 3 + 2 + 3 +(a+2b+3c)/4 >= 13
Dấu bằng xảy ra khi a=2,b=3,c=4
\(\frac{1}{2a+3b+3c}=\frac{1}{\left(a+b\right)+\left(a+c\right)+2\left(b+c\right)}\)
Sử dụng bất đẳng thức COSI quen thuộc \(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\)
=>\(\frac{1}{2a+3b+3c}\le\frac{1}{4}\left(\frac{1}{a+b+a+c}+\frac{1}{2\left(b+c\right)}\right)\le\frac{1}{4}\left(\frac{1}{4}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)+\frac{1}{2\left(b+c\right)}\right)\)
\(=\frac{1}{16\left(a+b\right)}+\frac{1}{16\left(a+c\right)}+\frac{1}{8\left(b+c\right)}\)
Làm tương tự đối với 2 biểu thức kia ta dc P\(\le\frac{1}{4}\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)=\frac{2017}{4}\)
Dấu bằng xảy ra khi \(a=b=c=\frac{3}{4034}\)
dùng Bất Đẳng Thức Cauchy chứng minh: với các số dương x;y;z;t
\(\left(x+y+z+t\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}\right)\ge16\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}\le\frac{16}{x+y+z+t}\)
dấu "=" xảy ra khi x=y=z=t áp dụng vào bài toán ta có
\(\frac{1}{2a+3b+3c}=\frac{1}{16}\cdot\frac{16}{\left(a+b\right)+\left(a+c\right)+\left(b+c\right)+\left(b+c\right)}\le\frac{1}{16}\left(\frac{1}{a+b}+\frac{1}{a+c}+\frac{2}{b+c}\right)\)
từ đó tìm được maxP=502,25 dấu "=" xảy ra khi \(a=b=c=\frac{3}{4034}\)
Dặt x=a, y=2b,z=3c
Khi đó
\(P=\frac{yz}{\sqrt{x+yz}}+\frac{xz}{\sqrt{y+xz}}+\frac{xy}{\sqrt{z+xy}}\)và x+y+z=1
Ta có \(\frac{yz}{\sqrt{x+yz}}=\frac{yz}{\sqrt{x\left(x+y+z\right)+yz}}=\frac{yz}{\sqrt{\left(x+y\right)\left(x+z\right)}}\le\frac{1}{2}yz\left(\frac{1}{x+y}+\frac{1}{x+z}\right)\)
=> \(P\le\frac{1}{2}\left(\frac{xz}{x+y}+\frac{yz}{x+y}\right)+\frac{1}{2}\left(\frac{xy}{y+z}+\frac{xz}{y+z}\right)+...=\frac{1}{2}\left(x+y+z\right)\)
\(=\frac{1}{2}\)
Vậy \(MaxP=\frac{1}{2}\)khi x=y=z=1/3 hay \(\hept{\begin{cases}a=\frac{1}{3}\\b=\frac{1}{6}\\c=\frac{1}{9}\end{cases}}\)