\(1\le\dfrac{a}{a+b+c}+\dfrac{b}{b+c+d}+\dfra...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2018

Không mất tính tổng quát, giả sử \(2\ge a\ge b\ge c\ge1\)

Khi đó dễ thấy dấu = sẽ đạt được tại biên, tức a=2, c=1 nên ta sẽ dồn các biến ra biên

Ta có: \(\left(\dfrac{a}{b}-1\right)\left(\dfrac{b}{c}-1\right)\ge0\Leftrightarrow\dfrac{a}{b}+\dfrac{b}{c}\le\dfrac{a}{c}+1\)

\(\left(\dfrac{b}{a}-1\right)\left(\dfrac{c}{b}-1\right)\ge0\Leftrightarrow\dfrac{b}{a}+\dfrac{c}{b}\le\dfrac{c}{a}+1\)

Do đó \(VT\le2\left(\dfrac{a}{c}+\dfrac{c}{a}\right)+2\) nên chỉ cần chứng minh \(\dfrac{a}{c}+\dfrac{c}{a}\le\dfrac{5}{2}\)(*) hay \(\dfrac{\left(a-2c\right)\left(2a-c\right)}{2ac}\le0\) ( luôn đúng do \(c\le a\le2c\) )

Vậy ta có đpcm. Dấu = xảy ra khi a=2, c=1, b=1 hoặc a=2, c=1, b=2 và các hoán vị tương ứng.

NV
13 tháng 11 2018

\(\dfrac{b}{1+b}+\dfrac{c}{1+c}+\dfrac{d}{1+d}\le1-\dfrac{a}{1+a}=\dfrac{1}{1+a}\)

\(\Rightarrow\dfrac{1}{1+a}\ge\dfrac{b}{1+b}+\dfrac{c}{1+c}+\dfrac{d}{1+d}\ge3\dfrac{\sqrt[3]{bcd}}{\sqrt[3]{\left(1+b\right)\left(1+c\right)\left(1+d\right)}}\)

Chứng minh tương tự ta có:

\(\dfrac{1}{1+b}\ge3\dfrac{\sqrt[3]{acd}}{\sqrt[3]{\left(1+a\right)\left(1+c\right)\left(1+d\right)}}\)

\(\dfrac{1}{1+c}\ge3\dfrac{\sqrt[3]{abd}}{\sqrt[3]{\left(1+a\right)\left(1+b\right)\left(1+d\right)}}\)

\(\dfrac{1}{1+d}\ge3\dfrac{\sqrt[3]{abc}}{\sqrt[3]{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\)

Nhân vế với vế của các BĐT trên ta được:

\(\dfrac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)\left(1+d\right)}\ge81\dfrac{abcd}{\left(1+a\right)\left(1+b\right)\left(1+c\right)\left(1+d\right)}\)

\(\Rightarrow81abcd\le1\Rightarrow abcd\le\dfrac{1}{81}\)

Dấu "=" xảy ra khi \(a=b=c=d=\dfrac{1}{3}\)

14 tháng 7 2018
https://i.imgur.com/kunWlGL.png
26 tháng 12 2018

b) Ta có:

\(\dfrac{1^2}{a}+\dfrac{1^2}{b}+\dfrac{1^2}{c}+\dfrac{1^2}{d}\ge\dfrac{\left(1+1+1+1\right)^2}{a+b+c+d}=\dfrac{16}{a+b+c+d}\)

Dấu = xảy rakhi a=b=c=d

CM : bn tự chứng minh

Áp dụng:

Ta có:

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{4}{c}+\dfrac{16}{d}=\dfrac{1^2}{a}+\dfrac{1^2}{b}+\dfrac{2^2}{c}+\dfrac{4^2}{d}\ge\dfrac{\left(1+1+2+4\right)^2}{a+b+c+d}=\dfrac{64}{a+b+c+d}\)

Dấu = xảy ra khi \(a=b=\dfrac{c}{2}=\dfrac{d}{4}\)

15 tháng 10 2017

Từ giả thiết, ta có:

\(\dfrac{1}{1+a}\ge1-\dfrac{1}{1+b}+1-\dfrac{1}{1+c}+1-\dfrac{1}{1+d}=\dfrac{b}{1+b}+\dfrac{c}{c+1}+\dfrac{d}{d+1}\ge3\sqrt[3]{\dfrac{b.c.d}{\left(1+b\right)\left(1+c\right)\left(1+d\right)}}\)

Tương tự:

\(\dfrac{1}{1+b}\ge3\sqrt[3]{\dfrac{cda}{\left(1+a\right)\left(1+c\right)\left(1+d\right)}}\)

\(\dfrac{1}{1+c}\ge3\sqrt[3]{\dfrac{abd}{\left(1+a\right)\left(1+b\right)\left(1+d\right)}}\)

\(\dfrac{1}{1+d}\ge3\sqrt[3]{\dfrac{abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\)

Nhân vế theo vế 4 BĐT vừa chứng minh rồi rút gọn ta được:

\(abcd\le\dfrac{1}{81}\left(đpcm\right)\)

15 tháng 10 2017

Mỗi vế trừ đi 4

4 tháng 6 2018

\(\frac{1}{a^2+b^2+2}+\frac{1}{c^2+b^2+2}+\frac{1}{a^2+c^2+2}\le\frac{3}{4}\)

\(\Leftrightarrow\frac{a^2+b^2}{a^2+b^2+2}+\frac{b^2+c^2}{b^2+c^2+2}+\frac{c^2+a^2}{c^2+a^2+2}\ge\frac{3}{2}\)

Áp dụng BĐT Cauchy-Schwarz ta có:

\(VT\ge\frac{\left(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\right)^2}{2\left(a^2+b^2+c^2\right)+6}\)

\(\ge\frac{\sqrt{3\left(a^2b^2+b^2c^2+c^2a^2\right)}+2\left(a^2+b^2+c^2\right)}{a^2+b^2+c^2}\)

\(\ge\frac{2\left(a^2+b^2+c^2\right)+ab+bc+ca}{a^2+b^2+c^2}\)

Cần chứng minh \(\frac{2\left(a^2+b^2+c^2\right)+ab+bc+ca}{a^2+b^2+c^2}\ge\frac{3}{2}\)

\(\Leftrightarrow\left(a+b+c\right)^2\ge0\) *luôn đúng*

22 tháng 3 2017

Áp dụng bất đẳng thức \(\dfrac{1}{a+b}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\forall a,b>0\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{2a+b+c}=\dfrac{a}{a+b+c+a}\le\dfrac{a}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{c+a}\right)\\\dfrac{b}{a+2b+c}=\dfrac{b}{a+b+b+c}\le\dfrac{b}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}\right)\\\dfrac{c}{a+b+2c}=\dfrac{c}{a+c+b+c}\le\dfrac{c}{4}\left(\dfrac{1}{a+c}+\dfrac{1}{b+c}\right)\end{matrix}\right.\)

\(\Rightarrow VT\le\dfrac{a}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{a+c}\right)+\dfrac{b}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}\right)+\dfrac{c}{4}\left(\dfrac{1}{a+c}+\dfrac{1}{b+c}\right)\)

\(\Rightarrow VT\le\dfrac{a}{4\left(a+b\right)}+\dfrac{a}{4\left(a+c\right)}+\dfrac{b}{4\left(a+b\right)}+\dfrac{b}{4\left(b+c\right)}+\dfrac{c}{4\left(a+c\right)}+\dfrac{c}{4\left(b+c\right)}\)

\(\Rightarrow VT\le\left[\dfrac{a}{4\left(a+b\right)}+\dfrac{b}{4\left(a+b\right)}\right]+\left[\dfrac{b}{4\left(b+c\right)}+\dfrac{c}{4\left(b+c\right)}\right]+\left[\dfrac{c}{4\left(a+c\right)}+\dfrac{a}{4\left(a+c\right)}\right]\)

\(\Rightarrow VT\le\dfrac{a+b}{4\left(a+b\right)}+\dfrac{b+c}{4\left(b+c\right)}+\dfrac{c+a}{4\left(c+a\right)}\)

\(\Rightarrow VT\le\dfrac{1}{4}+\dfrac{1}{4}+\dfrac{1}{4}=\dfrac{3}{4}\)

\(\Leftrightarrow\dfrac{a}{2a+b+c}+\dfrac{b}{a+2b+c}+\dfrac{c}{a+b+2c}\le\dfrac{3}{4}\) ( đpcm )

Dấu "=" xảy ra khi \(a=b=c\)

23 tháng 3 2017

Bạn ơi BĐT kia có tên gì ko?